These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 385309)

  • 21. Three tRNA binding sites on Escherichia coli ribosomes.
    Rheinberger HJ; Sternbach H; Nierhaus KH
    Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5310-4. PubMed ID: 7029532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate.
    Takahashi K; Ghag S; Chládek S
    Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of N-acetyl-phenylalanyl-tRNAPhe with 70S ribosomes of Escherichia coli.
    Odinzov VB; Kirillov SV
    Nucleic Acids Res; 1978 Oct; 5(10):3871-9. PubMed ID: 364420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward a model for the interaction between elongation factor Tu and the ribosome.
    Weijland A; Parmeggiani A
    Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA.
    Borowski C; Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4202-6. PubMed ID: 8633041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rate of cleavage of GTP on the binding of Phe-tRNA.elongation factor Tu.GTP to poly(U)-programmed ribosomes of Escherichia coli.
    Eccleston JF; Dix DB; Thompson RC
    J Biol Chem; 1985 Dec; 260(30):16237-41. PubMed ID: 3905812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The interaction of elongation factor G with N-acetylphenylalanyl transfer RNA-ribosome complexes.
    Modolell J; Cabrer B; Váquez D
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3561-5. PubMed ID: 4519646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis.
    Bhuta P; Chládek S
    Biochim Biophys Acta; 1982 Aug; 698(2):167-72. PubMed ID: 6127109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ribosomal translocation assayed by the matrix-bound poly(uridylic acid) column technique.
    Belitsina NV; Spirin AS
    Eur J Biochem; 1979 Feb; 94(1):315-20. PubMed ID: 374079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. GTP hydrolysis uncoupled with ribosomal peptide synthesis and dependent on preparation of elongation factor T].
    Smailov SK; Kakhniashvili DG; Gavrilova LP
    Biokhimiia; 1982 Oct; 47(10):1747-51. PubMed ID: 6129003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation?
    Ehrenberg M; Rojas AM; Weiser J; Kurland CG
    J Mol Biol; 1990 Feb; 211(4):739-49. PubMed ID: 2179565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study.
    Pingoud A; Urbanke C; Krauss G; Peters F; Maass G
    Eur J Biochem; 1977 Sep; 78(2):403-9. PubMed ID: 334538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function.
    Saarma U; Remme J; Ehrenberg M; Bilgin N
    J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. tRNA and the guanosinetriphosphatase activity of elongation factor Tu.
    Swart GW; Parmeggiani A
    Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer RNA binding to 80S ribosomes from yeast: evidence for three sites.
    Triana F; Nierhaus KH; Chakraburtty K
    Biochem Mol Biol Int; 1994 Aug; 33(5):909-15. PubMed ID: 7987260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Ribosomal proteins interacting with Phe-tRNAPhe during enzymatic binding with translating ribosome before and after the release of the elongation factor EF-Tu].
    Abdurashidova GG; Ovsepian VA; Chernyĭ AA; Kaminir LB; Budovskiĭ EI
    Mol Biol (Mosk); 1985; 19(3):800-4. PubMed ID: 3897833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system.
    Baksht E; de Groot N; Sprinzl M; Cramer F
    Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.