BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38530950)

  • 1. Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection.
    Yang J; Li G; Chen S; Su X; Xu D; Zhai Y; Liu Y; Hu G; Guo C; Yang HB; Occhipinti LG; Hu FX
    ACS Sens; 2024 Apr; 9(4):1945-1956. PubMed ID: 38530950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.
    Yang C; Zhang H
    Mikrochim Acta; 2023 Oct; 190(11):451. PubMed ID: 37880465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe-N-C single-atom nanozymes based sensor array for dual signal selective determination of antioxidants.
    Shen L; Khan MA; Wu X; Cai J; Lu T; Ning T; Liu Z; Lu W; Ye D; Zhao H; Zhang J
    Biosens Bioelectron; 2022 Jun; 205():114097. PubMed ID: 35219019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Biosensor Assay for Rapid Uropathogen Identification and Phenotypic Antimicrobial Susceptibility Testing.
    Altobelli E; Mohan R; Mach KE; Sin MLY; Anikst V; Buscarini M; Wong PK; Gau V; Banaei N; Liao JC
    Eur Urol Focus; 2017 Apr; 3(2-3):293-299. PubMed ID: 28753748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanozyme sensor array based on Fe, Se co-doped carbon material for the discrimination of Sulfur-containing compounds.
    Ren E; Qiu H; Yu Z; Cao M; Sohail M; Lu GP; Zhang X; Lin Y
    J Hazard Mater; 2024 May; 470():134127. PubMed ID: 38554521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A diaper-embedded disposable nitrite sensor with integrated on-board urine-activated battery for UTI screening.
    Yu W; Seo W; Tan T; Jung B; Ziaie B
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():303-306. PubMed ID: 28268337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification-free detection of
    Zhang G; Wu Y; Xue W; Wang D; Chang Y; Liu M
    Chem Commun (Camb); 2024 Jun; 60(53):6741-6744. PubMed ID: 38809259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection.
    Yang J; Wang X; Sun Y; Chen B; Hu F; Guo C; Yang T
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Intact Cell Bioluminescence-Based Assay for the Simple and Rapid Diagnosis of Urinary Tract Infection.
    Reyes S; Le N; Fuentes MD; Upegui J; Dikici E; Broyles D; Quinto E; Daunert S; Deo SK
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-Nanoparticle-Supported Nanozyme-Based Colorimetric Sensor Array for Precise Identification of Proteins and Oral Bacteria.
    Lu Z; Lu N; Xiao Y; Zhang Y; Tang Z; Zhang M
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11156-11166. PubMed ID: 35212535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosensor diagnosis of urinary tract infections: a path to better treatment?
    Mach KE; Wong PK; Liao JC
    Trends Pharmacol Sci; 2011 Jun; 32(6):330-6. PubMed ID: 21458868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective flow-through nanohole array-based biosensing platform for the label-free detection of uropathogenic E. coli in real time.
    Gomez-Cruz J; Nair S; Manjarrez-Hernandez A; Gavilanes-Parra S; Ascanio G; Escobedo C
    Biosens Bioelectron; 2018 May; 106():105-110. PubMed ID: 29414075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of clinical and urine biomarkers for uncomplicated urinary tract infection using machine learning algorithms.
    Gadalla AAH; Friberg IM; Kift-Morgan A; Zhang J; Eberl M; Topley N; Weeks I; Cuff S; Wootton M; Gal M; Parekh G; Davis P; Gregory C; Hood K; Hughes K; Butler C; Francis NA
    Sci Rep; 2019 Dec; 9(1):19694. PubMed ID: 31873085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single clinical isolates from acute uncomplicated urinary tract infections are representative of dominant in situ populations.
    Willner D; Low S; Steen JA; George N; Nimmo GR; Schembri MA; Hugenholtz P
    mBio; 2014 Feb; 5(2):e01064-13. PubMed ID: 24570371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urine flow cytometry is an adequate screening tool for urinary tract infections in children.
    Broeren M; Nowacki R; Halbertsma F; Arents N; Zegers S
    Eur J Pediatr; 2019 Mar; 178(3):363-368. PubMed ID: 30569406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections.
    Burton RJ; Albur M; Eberl M; Cuff SM
    BMC Med Inform Decis Mak; 2019 Aug; 19(1):171. PubMed ID: 31443706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fidget spinner for the point-of-care diagnosis of urinary tract infection.
    Michael I; Kim D; Gulenko O; Kumar S; Kumar S; Clara J; Ki DY; Park J; Jeong HY; Kim TS; Kwon S; Cho YK
    Nat Biomed Eng; 2020 Jun; 4(6):591-600. PubMed ID: 32424198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study.
    Kloss S; Kampe B; Sachse S; Rösch P; Straube E; Pfister W; Kiehntopf M; Popp J
    Anal Chem; 2013 Oct; 85(20):9610-6. PubMed ID: 24010860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Culture-free detection of β-lactamase-Producing bacteria in urinary tract infections using a paper sensor.
    Liu G; Li W; Li S; Xu J; Wang X; Xu H; Liu D; Gao H
    Biosens Bioelectron; 2024 Aug; 257():116300. PubMed ID: 38657378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning models predicting multidrug resistant urinary tract infections using "DsaaS".
    Mancini A; Vito L; Marcelli E; Piangerelli M; De Leone R; Pucciarelli S; Merelli E
    BMC Bioinformatics; 2020 Aug; 21(Suppl 10):347. PubMed ID: 32838752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.