These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 385310)

  • 1. Lack of correlation between affinity of the tRNA for the aminoacyl-tRNA synthetase and aminoacylation capacity as studied with modified tRNAPhe.
    Renaud M; Ehrlich R; Bonnet J; Remy P
    Eur J Biochem; 1979 Oct; 100(1):157-64. PubMed ID: 385310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational activation of the yeast phenylalanyl-tRNA synthetase catalytic site induced by tRNAPhe interaction: triggering of adenosine or CpCpA trinucleoside diphosphate aminoacylation upon binding of tRNAPhe lacking these residues.
    Renaud M; Bacha H; Remy P; Ebel JP
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1606-8. PubMed ID: 7015339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of excision of the Y-base on the interaction of tRNAPhe (yeast) with phenylalanyl-tRNA synthetase (yeast).
    Krauss G; Peters F; Maass G
    Nucleic Acids Res; 1976 Mar; 3(3):631-9. PubMed ID: 5707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceptor activity of tRNAPhe from yeasts under special conditions of aminoacylation.
    Belchev B; Yaneva M
    Mol Biol (Mosk); 1976; 10(4):663-7. PubMed ID: 15212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the steady-state mechanism of the aminoacylation of tRNAPhe by phenylalanyl-tRNA synthetase from yeast.
    Thiebe R
    Nucleic Acids Res; 1978 Jun; 5(6):2055-71. PubMed ID: 353737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced hydrolytic activity of yeast phenylalanyl-tRNA synthetase by tRNAPhe-CC.
    Kuhn W; Schneider FW
    Nucleic Acids Res; 1982 Apr; 10(7):2439-51. PubMed ID: 7045811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenylalanyl-tRNA synthetase from E. coli MRE-600: localization of the phenylalanine binding sites on the subunits by affinity reagents.
    Lavrik OI; Moor NA; Khodyreva SN
    Mol Biol Rep; 1982 Mar; 8(2):123-6. PubMed ID: 7043240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equivalent and non-equivalent binding sites for tRNA on aminoacyl-tRNA synthetases.
    Krauss G; Pingoud A; Boehme D; Riesner D; Peters F; Maas G
    Eur J Biochem; 1975 Jul; 55(3):517-29. PubMed ID: 1100384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valyl- and phenylalanyl-tRNA synthetase from baker's yeast: recognition of transfer RNA results from a multistep process, as indicated by inhibition of aminoacylation with modified transfer RNA.
    von der Harr F; Cramer F
    Biochemistry; 1978 Oct; 17(21):4509-14. PubMed ID: 363144
    [No Abstract]   [Full Text] [Related]  

  • 13. Conformation transitions of a tRNA--aminoacyl-tRNA synthetase complex induced by tRNAs bearing different modifications in the 3' terminus.
    Krauss G; von der Haar F; Maass G
    Biochemistry; 1979 Oct; 18(21):4755-61. PubMed ID: 387079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properies of tRNAPhe from yeast carrying a spin label on the 3'-terminal. Interaction with yeast phenylalanyl-tRNA Synthetase and elongation factor Tu from Escherichia coli.
    Sprinzl M; Siboska GE; Pedersen JA
    Nucleic Acids Res; 1978 Mar; 5(3):861-77. PubMed ID: 205839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of anticooperative binding of phenylalanyl-tRNAPhe and tRNAPhe to phenylalanyl-tRNA synthetase of Escherichia coli K10.
    Holler E
    Biochemistry; 1980 Apr; 19(7):1397-402. PubMed ID: 6992864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenylalanyl-tRNA synthetase from E. coli MRE-600: analysis of the active site distribution on the enzyme subunits by affinity labelling.
    Khodyreva SN; Moor NA; Ankilova VN; Lavrik OI
    Biochim Biophys Acta; 1985 Aug; 830(2):206-12. PubMed ID: 3893548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutual adaptation of yeast tRNAPhe and phenylalanyl-tRNA synthetase: Possible role of tryptophan residues and long range interactions.
    Lefevre JF; Ehrlich R; Kilhoffer MC; Remy P
    FEBS Lett; 1980 Jun; 114(2):219-24. PubMed ID: 6993228
    [No Abstract]   [Full Text] [Related]  

  • 18. The aminoacyladenylate mechanism in the aminoacylation reaction of yeast phenylalanyl-tRNA synthetase.
    Fasiolo F; Fersht AR
    Eur J Biochem; 1978 Apr; 85(1):85-8. PubMed ID: 346352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytical mechanism of the phenylalanyl-tRNA synthetase from yeast. Reactivity of ATP in the absence of phenylalanine.
    Thiebe R
    Eur J Biochem; 1984 Apr; 140(1):143-6. PubMed ID: 6368229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: role of tRNAPhe in the discrimination between tyrosine and phenylalanine.
    Lin SX; Baltzinger M; Remy P
    Biochemistry; 1984 Aug; 23(18):4109-16. PubMed ID: 6386044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.