BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38531243)

  • 1. A study on the treatment of brain tumors with BNCT using several moderators with different thicknesses.
    Zhu Y; Lin Z; Yu H; Yu X
    Appl Radiat Isot; 2024 Jun; 208():111303. PubMed ID: 38531243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Nuclear Reactor-Based to Proton Accelerator-Based Therapy: The Finnish Boron Neutron Capture Therapy Experience.
    Porra L; Wendland L; Seppälä T; Koivunoro H; Revitzer H; Tervonen J; Kankaanranta L; Anttonen A; Tenhunen M; Joensuu H
    Cancer Biother Radiopharm; 2023 Apr; 38(3):184-191. PubMed ID: 36269660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals.
    Li G; Jiang W; Zhang L; Chen W; Li Q
    Front Public Health; 2021; 9():642561. PubMed ID: 33777888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to dose estimation and in-phantom figure of merit measurement in BNCT by using artificial neural networks.
    Ahangari R; Afarideh H
    Australas Phys Eng Sci Med; 2011 Dec; 34(4):467-79. PubMed ID: 22042720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility study on the use of 230 MeV proton cyclotron in proton therapy centers as a spallation neutron source for BNCT.
    Nobakht E; Fouladi N
    Rep Pract Oncol Radiother; 2019; 24(6):644-653. PubMed ID: 31719802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field.
    Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K
    Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.
    Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M
    Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the beam shaping assembly in the D-D neutron generators-based BNCT using the response matrix method.
    Kasesaz Y; Khalafi H; Rahmani F
    Appl Radiat Isot; 2013 Dec; 82():55-9. PubMed ID: 23954283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beam shaping assembly design of
    Zaidi L; Belgaid M; Taskaev S; Khelifi R
    Appl Radiat Isot; 2018 Sep; 139():316-324. PubMed ID: 29890472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimized neutron-beam shaping assembly for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; Valda AA; Minsky DM
    Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.