These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38531303)

  • 1. Photoactivated 9-methylacridine destroys midgut tissues of Aedes aegypti larvae by targeting ROS-mediated apoptosis in the mitochondrial pathway of midgut cells.
    Xiao X; Gao Q; Wang LY; Zhang YF; Luo YP
    J Photochem Photobiol B; 2024 May; 254():112893. PubMed ID: 38531303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Photoactivated Toxicity of 2-Thiophenylfuranocoumarin Induce Midgut Damage and Apoptosis in
    Wu J; Wang L; Zhang Y; Zhang S; Ahmad S; Luo Y
    J Agric Food Chem; 2021 Jan; 69(3):1091-1106. PubMed ID: 33432806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of Aedes aegypti larvae.
    Zhang J; Ahmad S; Wang LY; Han Q; Zhang JC; Luo YP
    Free Radic Biol Med; 2019 Jun; 137():87-98. PubMed ID: 31022448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae.
    Zhang C; Ding Y; Zhou M; Tang Y; Chen R; Chen Y; Wen Y; Wang S
    Parasit Vectors; 2023 Aug; 16(1):259. PubMed ID: 37533099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of midgut bacteria in larvae and females of Aedes aegypti and Aedes albopictus from Gampaha District, Sri Lanka.
    Ranasinghe K; Gunathilaka N; Amarasinghe D; Rodrigo W; Udayanga L
    Parasit Vectors; 2021 Aug; 14(1):433. PubMed ID: 34454583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota.
    Oliveira JH; Gonçalves RL; Lara FA; Dias FA; Gandara AC; Menna-Barreto RF; Edwards MC; Laurindo FR; Silva-Neto MA; Sorgine MH; Oliveira PL
    PLoS Pathog; 2011 Mar; 7(3):e1001320. PubMed ID: 21445237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations of mitochondrial electron transport chain and oxidative stress induced by alkaloid-like α-aminonitriles on Aedes aegypti larvae.
    Borrero Landazabal MA; Carreño Otero AL; Kouznetsov VV; Duque Luna JE; Mendez-Sanchez SC
    Pestic Biochem Physiol; 2018 Jan; 144():64-70. PubMed ID: 29463410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the mechanisms of action and mosquito larva midgut response to a yeast-encapsulated orange oil larvicide.
    Kelly PH; Yingling AV; Ahmed A; Hurwitz I; Ramalho-Ortigao M
    Parasit Vectors; 2022 May; 15(1):183. PubMed ID: 35643588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aedes aegypti larvae treated with spinosad produce adults with damaged midgut and reduced fecundity.
    Fernandes KM; Tomé HVV; Miranda FR; Gonçalves WG; Pascini TV; Serrão JE; Martins GF
    Chemosphere; 2019 Apr; 221():464-470. PubMed ID: 30654260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral and ultrastructural effects of novaluron on Aedes aegypti larvae.
    Fiaz M; Martínez LC; Plata-Rueda A; Cossolin JFS; Serra RS; Martins GF; Serrão JE
    Infect Genet Evol; 2021 Sep; 93():104974. PubMed ID: 34166815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti.
    Khoo CC; Piper J; Sanchez-Vargas I; Olson KE; Franz AW
    BMC Microbiol; 2010 Apr; 10():130. PubMed ID: 20426860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological, histological and immunohistochemical studies on the toxicity of spent coffee grounds and caffeine on the larvae of Aedes aegypti (Diptera: Culicidae).
    Miranda FR; Fernandes KM; Bernardes RC; Martins GF
    Environ Pollut; 2021 Feb; 271():116307. PubMed ID: 33360348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibody to H(+) V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti).
    Zhuang Z; Linser PJ; Harvey WR
    J Exp Biol; 1999 Sep; 202(Pt 18):2449-60. PubMed ID: 10460732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape.
    Dong S; Behura SK; Franz AWE
    BMC Genomics; 2017 May; 18(1):382. PubMed ID: 28506207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.
    Jonusaite S; Donini A; Kelly SP
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Mar; 205():58-67. PubMed ID: 27988380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases.
    Dixon DP; Van Ekeris L; Linser PJ
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28230813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress induction by crude extract of Xylaria sp. triggers lethality in the larvae of Aedes aegypti (Diptera: Culicidae).
    Costa MBS; Simões RC; Silva MJAD; Oliveira AC; Acho LDR; Lima ES; Tadei WP; Teles HL; Oliveira CM
    Rev Soc Bras Med Trop; 2022; 55():e03732021. PubMed ID: 35522807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial composition of midgut and entire body of laboratory colonies of Aedes aegypti and Aedes albopictus from Southern China.
    Lin D; Zheng X; Sanogo B; Ding T; Sun X; Wu Z
    Parasit Vectors; 2021 Nov; 14(1):586. PubMed ID: 34838108
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Bombaça ACS; Gandara ACP; Ennes-Vidal V; Bottino-Rojas V; Dias FA; Farnesi LC; Sorgine MH; Bahia AC; Bruno RV; Menna-Barreto RFS
    Front Cell Infect Microbiol; 2021; 11():732925. PubMed ID: 34485182
    [No Abstract]   [Full Text] [Related]  

  • 20. Exposure of mosquito (Aedes aegypti) larvae to the water extract and lectin-rich fraction of Moringa oleifera seeds impairs their development and future fecundity.
    Silva LLS; Fernandes KM; Miranda FR; Silva SCC; Coelho LCBB; Navarro DMDAF; Napoleão TH; Martins GF; Paiva PMG
    Ecotoxicol Environ Saf; 2019 Nov; 183():109583. PubMed ID: 31446169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.