These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38531810)
1. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover. Peng S; Ramirez-Parada TH; Mazer SJ; Record S; Park I; Ellison AM; Davis CC New Phytol; 2024 Jun; 242(5):2338-2352. PubMed ID: 38531810 [TBL] [Abstract][Full Text] [Related]
2. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
3. Dissecting impacts of phenological shifts for performance across biological scales. Zettlemoyer MA; DeMarche ML Trends Ecol Evol; 2022 Feb; 37(2):147-157. PubMed ID: 34763943 [TBL] [Abstract][Full Text] [Related]
4. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions. Record S; Strecker A; Tuanmu MN; Beaudrot L; Zarnetske P; Belmaker J; Gerstner B PLoS One; 2018; 13(4):e0194650. PubMed ID: 29652936 [TBL] [Abstract][Full Text] [Related]
5. Macrophenology: insights into the broad-scale patterns, drivers, and consequences of phenology. Gallinat AS; Ellwood ER; Heberling JM; Miller-Rushing AJ; Pearse WD; Primack RB Am J Bot; 2021 Nov; 108(11):2112-2126. PubMed ID: 34755895 [TBL] [Abstract][Full Text] [Related]
6. Forecasting phenology: from species variability to community patterns. Diez JM; Ibáñez I; Miller-Rushing AJ; Mazer SJ; Crimmins TM; Crimmins MA; Bertelsen CD; Inouye DW Ecol Lett; 2012 Jun; 15(6):545-53. PubMed ID: 22433120 [TBL] [Abstract][Full Text] [Related]
7. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Park DS; Breckheimer I; Williams AC; Law E; Ellison AM; Davis CC Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455212 [TBL] [Abstract][Full Text] [Related]
8. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms. Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038 [TBL] [Abstract][Full Text] [Related]
9. Biological invasions reveal how niche change affects the transferability of species distribution models. Liu C; Wolter C; Courchamp F; Roura-Pascual N; Jeschke JM Ecology; 2022 Aug; 103(8):e3719. PubMed ID: 35388469 [TBL] [Abstract][Full Text] [Related]
10. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. Satake A; Nagahama A; Sasaki E New Phytol; 2022 Mar; 233(6):2340-2353. PubMed ID: 34862973 [TBL] [Abstract][Full Text] [Related]
11. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349 [TBL] [Abstract][Full Text] [Related]
12. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950 [TBL] [Abstract][Full Text] [Related]
13. How many species will Earth lose to climate change? Wiens JJ; Zelinka J Glob Chang Biol; 2024 Jan; 30(1):e17125. PubMed ID: 38273487 [TBL] [Abstract][Full Text] [Related]
14. The importance of phylogeny to the study of phenological response to global climate change. Davis CC; Willis CG; Primack RB; Miller-Rushing AJ Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3201-13. PubMed ID: 20819813 [TBL] [Abstract][Full Text] [Related]
15. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes. Brown JL; Weber JJ; Alvarado-Serrano DF; Hickerson MJ; Franks SJ; Carnaval AC Am J Bot; 2016 Jan; 103(1):153-63. PubMed ID: 26747843 [TBL] [Abstract][Full Text] [Related]
16. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. Munson SM; Sher AA Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550 [TBL] [Abstract][Full Text] [Related]
17. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
18. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk. Park DS; Xie Y; Ellison AM; Lyra GM; Davis CC New Phytol; 2023 Sep; 239(6):2153-2165. PubMed ID: 36942966 [TBL] [Abstract][Full Text] [Related]
19. Soil properties constrain predicted poleward migration of plants under climate change. Ni M; Vellend M New Phytol; 2024 Jan; 241(1):131-141. PubMed ID: 37525059 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Kearney M; Porter W Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]