BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38531810)

  • 1. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover.
    Peng S; Ramirez-Parada TH; Mazer SJ; Record S; Park I; Ellison AM; Davis CC
    New Phytol; 2024 Jun; 242(5):2338-2352. PubMed ID: 38531810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change.
    Lu WX; Wang ZZ; Hu XY; Rao GY
    Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting impacts of phenological shifts for performance across biological scales.
    Zettlemoyer MA; DeMarche ML
    Trends Ecol Evol; 2022 Feb; 37(2):147-157. PubMed ID: 34763943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.
    Record S; Strecker A; Tuanmu MN; Beaudrot L; Zarnetske P; Belmaker J; Gerstner B
    PLoS One; 2018; 13(4):e0194650. PubMed ID: 29652936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophenology: insights into the broad-scale patterns, drivers, and consequences of phenology.
    Gallinat AS; Ellwood ER; Heberling JM; Miller-Rushing AJ; Pearse WD; Primack RB
    Am J Bot; 2021 Nov; 108(11):2112-2126. PubMed ID: 34755895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting phenology: from species variability to community patterns.
    Diez JM; Ibáñez I; Miller-Rushing AJ; Mazer SJ; Crimmins TM; Crimmins MA; Bertelsen CD; Inouye DW
    Ecol Lett; 2012 Jun; 15(6):545-53. PubMed ID: 22433120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States.
    Park DS; Breckheimer I; Williams AC; Law E; Ellison AM; Davis CC
    Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological invasions reveal how niche change affects the transferability of species distribution models.
    Liu C; Wolter C; Courchamp F; Roura-Pascual N; Jeschke JM
    Ecology; 2022 Aug; 103(8):e3719. PubMed ID: 35388469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates.
    Satake A; Nagahama A; Sasaki E
    New Phytol; 2022 Mar; 233(6):2340-2353. PubMed ID: 34862973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change.
    Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE
    PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.
    Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA
    Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How many species will Earth lose to climate change?
    Wiens JJ; Zelinka J
    Glob Chang Biol; 2024 Jan; 30(1):e17125. PubMed ID: 38273487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of phylogeny to the study of phenological response to global climate change.
    Davis CC; Willis CG; Primack RB; Miller-Rushing AJ
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3201-13. PubMed ID: 20819813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.
    Brown JL; Weber JJ; Alvarado-Serrano DF; Hickerson MJ; Franks SJ; Carnaval AC
    Am J Bot; 2016 Jan; 103(1):153-63. PubMed ID: 26747843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.
    Munson SM; Sher AA
    Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.
    Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR
    Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk.
    Park DS; Xie Y; Ellison AM; Lyra GM; Davis CC
    New Phytol; 2023 Sep; 239(6):2153-2165. PubMed ID: 36942966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil properties constrain predicted poleward migration of plants under climate change.
    Ni M; Vellend M
    New Phytol; 2024 Jan; 241(1):131-141. PubMed ID: 37525059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges.
    Kearney M; Porter W
    Ecol Lett; 2009 Apr; 12(4):334-50. PubMed ID: 19292794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.