These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 38532082)

  • 1. Three-dimensional reconstruction of industrial parts from a single image.
    Xu Z; Wang A; Hou F; Zhao G
    Vis Comput Ind Biomed Art; 2024 Mar; 7(1):7. PubMed ID: 38532082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses.
    Galassi F; Alkhalil M; Lee R; Martindale P; Kharbanda RK; Channon KM; Grau V; Choudhury RP
    PLoS One; 2018; 13(1):e0190650. PubMed ID: 29298341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biventricular myocardial strains via nonrigid registration of anatomical NURBS model [corrected].
    Tustison NJ; Amini AA
    IEEE Trans Med Imaging; 2006 Jan; 25(1):94-112. PubMed ID: 16398418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models.
    Lee C; Lodwick D; Hasenauer D; Williams JL; Lee C; Bolch WE
    Phys Med Biol; 2007 Jun; 52(12):3309-33. PubMed ID: 17664546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discretization of Non-uniform Rational B-Spline (NURBS) Models for Meshless Isogeometric Analysis.
    Duh U; Shankar V; Kosec G
    J Sci Comput; 2024; 100(2):51. PubMed ID: 38966340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network.
    Wang Y; Zhong Z; Hua J
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):960-970. PubMed ID: 31442979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning method of stochastic reconstruction of three-dimensional digital cores from a two-dimensional image.
    Li J; Teng Q; Zhang N; Chen H; He X
    Phys Rev E; 2023 May; 107(5-2):055309. PubMed ID: 37329045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces.
    Wang C; Xu F; Hsu MC; Krishnamurthy A
    Comput Aided Geom Des; 2017; 52-53():190-204. PubMed ID: 29051678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph.
    Lu S; Li S; Wang Y; Zhang L; Hu Y; Li B
    Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35100576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric boundary reconstruction algorithm for industrial CT metrology application.
    Yin Z; Khare K; De Man B
    J Xray Sci Technol; 2009; 17(2):115-33. PubMed ID: 19696466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D cine-magnetic resonance imaging using spatial and temporal implicit neural representation learning (STINR-MR).
    Shao HC; Mengke T; Deng J; Zhang Y
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38479004
    [No Abstract]   [Full Text] [Related]  

  • 12. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Distributed Framework for 3D Reconstruction Integrating Fringe Projection with Deep Learning.
    Nguyen AH; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers.
    Dratsch T; Siedek F; Zäske C; Sonnabend K; Rauen P; Terzis R; Hahnfeldt R; Maintz D; Persigehl T; Bratke G; Iuga A
    Eur Radiol Exp; 2023 Oct; 7(1):66. PubMed ID: 37880546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.
    Huang X; Zhang Y; Chen L; Wang J
    Med Phys; 2020 Jul; 47(7):3000-3012. PubMed ID: 32198934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric shape representation by a deformable NURBS model for cardiac functional measurements.
    Chen SY; Guan Q
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):480-7. PubMed ID: 20952325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast 3D Face Reconstruction from a Single Image Using Different Deep Learning Approaches for Facial Palsy Patients.
    Nguyen DP; Nguyen TN; Dakpé S; Ho Ba Tho MC; Dao TT
    Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intelligent recommendation system for personalised parametric garment patterns by integrating designer's knowledge and 3D body measurements.
    Chi C; Zeng X; Bruniaux P; Tartare G
    Ergonomics; 2024 Mar; ():1-21. PubMed ID: 38544443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Deep Learning and B-Splines to Model Blood Vessel Lumen from 3D Images.
    Materka A; Jurek J
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D reconstruction of bone CT scan images based on deformable convex hull.
    Liu T; Lu Y; Xu J; Yang H; Hu J
    Med Biol Eng Comput; 2024 Feb; 62(2):551-561. PubMed ID: 37945796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.