These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38532615)
1. Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe Çadırcı M; Elibol E; Demirci T; Kurban M Luminescence; 2024 Apr; 39(4):e4722. PubMed ID: 38532615 [TBL] [Abstract][Full Text] [Related]
3. Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors. Tang L; Zhang Y; Liao C; Guo Y; Lu Y; Xia Y; Liu Y Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433589 [TBL] [Abstract][Full Text] [Related]
4. Low temperature photoluminescence properties of CsPbBr Ai B; Liu C; Deng Z; Wang J; Han J; Zhao X Phys Chem Chem Phys; 2017 Jul; 19(26):17349-17355. PubMed ID: 28650051 [TBL] [Abstract][Full Text] [Related]
5. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Parveen S; Paul KK; Das R; Giri PK J Colloid Interface Sci; 2019 Mar; 539():619-633. PubMed ID: 30612025 [TBL] [Abstract][Full Text] [Related]
6. The composition effect on the optical properties of aqueous synthesized Cu-In-S and Zn-Cu-In-S quantum dot nanocrystals. Zhang B; Wang Y; Yang C; Hu S; Gao Y; Zhang Y; Wang Y; Demir HV; Liu L; Yong KT Phys Chem Chem Phys; 2015 Oct; 17(38):25133-41. PubMed ID: 26349413 [TBL] [Abstract][Full Text] [Related]
12. Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots. Pfingsten O; Klein J; Protesescu L; Bodnarchuk MI; Kovalenko MV; Bacher G Nano Lett; 2018 Jul; 18(7):4440-4446. PubMed ID: 29916252 [TBL] [Abstract][Full Text] [Related]
13. Studies on optical absorption and photoluminescence of thioglycerol-stabilized CdS quantum dots. Unni C; Philip D; Gopchandran KG Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1402-7. PubMed ID: 18541455 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na Khafajeh R; Molaei M; Karimipour M Luminescence; 2017 Jun; 32(4):581-587. PubMed ID: 27699995 [TBL] [Abstract][Full Text] [Related]
16. Precise size separation of water-soluble red-to-near-infrared-luminescent silicon quantum dots by gel electrophoresis. Fujii M; Minami A; Sugimoto H Nanoscale; 2020 Apr; 12(16):9266-9271. PubMed ID: 32313916 [TBL] [Abstract][Full Text] [Related]
17. Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes. Bora A; Mawlong LPL; Das R; Giri PK J Colloid Interface Sci; 2020 Mar; 561():519-532. PubMed ID: 31740135 [TBL] [Abstract][Full Text] [Related]
18. [Research on Spectrum Matching Method for PbSe Quantum Dots Luminescence Spectrum and Gas Absorption Spectrum]. Xing XX; Qin HW; Shang WW Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3588-91. PubMed ID: 30198694 [TBL] [Abstract][Full Text] [Related]
19. Temperature-Dependent Optical Properties of Perovskite Quantum Dots with Mixed-A-Cations. Hu L; Zhao W; Duan W; Chen G; Fan B; Zhang X Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334748 [TBL] [Abstract][Full Text] [Related]
20. Heterostructure seed-mediated synthesis of zinc phosphide quantum dots for bright band-edge emission. Kim JH; Kwon H; Jeong M; Bang J Nanoscale; 2024 Oct; 16(38):17984-17991. PubMed ID: 39246266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]