These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 38532879)
1. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization. Manzoori AR; Malatesta D; Primavesi J; Ijspeert A; Bouri M Front Bioeng Biotechnol; 2024; 12():1324587. PubMed ID: 38532879 [No Abstract] [Full Text] [Related]
2. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton. Young AJ; Foss J; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():4. PubMed ID: 28337434 [TBL] [Abstract][Full Text] [Related]
3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
4. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study. Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159 [TBL] [Abstract][Full Text] [Related]
5. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads. Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714 [TBL] [Abstract][Full Text] [Related]
6. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton. Young AJ; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810 [TBL] [Abstract][Full Text] [Related]
7. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Galle S; Malcolm P; Collins SH; De Clercq D J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684 [TBL] [Abstract][Full Text] [Related]
8. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
9. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds. Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372 [TBL] [Abstract][Full Text] [Related]
11. Novel Design and Implementation of a Neuromuscular Controller on a Hip Exoskeleton for Partial Gait Assistance. Messara S; Manzoori AR; Di Russo A; Ijspeert A; Bouri M IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941265 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. Mooney LM; Herr HM J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449 [TBL] [Abstract][Full Text] [Related]
13. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control. Koller JR; Remy CD; Ferris DP J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons. Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977 [TBL] [Abstract][Full Text] [Related]
15. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off. Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N Front Neurosci; 2018; 12():71. PubMed ID: 29491830 [TBL] [Abstract][Full Text] [Related]
16. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury. Wu AR; Dzeladini F; Brug TJH; Tamburella F; Tagliamonte NL; van Asseldonk EHF; van der Kooij H; Ijspeert AJ Front Neurorobot; 2017; 11():30. PubMed ID: 28676752 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349 [TBL] [Abstract][Full Text] [Related]
18. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking. Chang CH; Casas J; Brose SW; Duenas VH Front Robot AI; 2021; 8():702860. PubMed ID: 35127833 [TBL] [Abstract][Full Text] [Related]
19. Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations. Franks PW; Bryan GM; Martin RM; Reyes R; Lakmazaheri AC; Collins SH Wearable Technol; 2021; 2():e16. PubMed ID: 38486633 [TBL] [Abstract][Full Text] [Related]
20. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]