These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38532880)

  • 1. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture.
    Huang T; Ruan M; Huang S; Fan L; Wu X
    Front Bioeng Biotechnol; 2024; 12():1280363. PubMed ID: 38532880
    [No Abstract]   [Full Text] [Related]  

  • 2. Concurrent assessment of gait kinematics using marker-based and markerless motion capture.
    Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ
    J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Scattone Silva R; Silbernagel KG; Baxter JR
    J Biomech; 2023 Aug; 157():111751. PubMed ID: 37552921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Lower Extremity Joint Moment and Power Estimated by Markerless and Marker-Based Systems during Treadmill Running.
    Tang H; Pan J; Munkasy B; Duffy K; Li L
    Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of markerless and marker-based motion capture of gait kinematics in individuals with cerebral palsy and chronic stroke: A case study series.
    Steffensen EA; Magalhães F; Knarr BA; Kingston DC
    Res Sq; 2023 Feb; ():. PubMed ID: 36798184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements.
    Song K; Hullfish TJ; Silva RS; Silbernagel KG; Baxter JR
    bioRxiv; 2023 Feb; ():. PubMed ID: 36865211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept.
    Ceseracciu E; Sawacha Z; Cobelli C
    PLoS One; 2014; 9(3):e87640. PubMed ID: 24595273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of OpenCap: A low-cost markerless motion capture system for lower-extremity kinematics during return-to-sport tasks.
    Turner JA; Chaaban CR; Padua DA
    J Biomech; 2024 Jun; 171():112200. PubMed ID: 38905926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains.
    Riazati S; McGuirk TE; Perry ES; Sihanath WB; Patten C
    Front Hum Neurosci; 2022; 16():867474. PubMed ID: 35782037
    [No Abstract]   [Full Text] [Related]  

  • 10. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system.
    Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH
    Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between lower extremity joint running kinetics captured by marker-based and markerless systems were speed dependent.
    Tang H; Munkasy B; Li L
    J Sport Health Sci; 2024 Jul; 13(4):569-578. PubMed ID: 38218372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-session repeatability of markerless motion capture gait kinematics.
    Kanko RM; Laende E; Selbie WS; Deluzio KJ
    J Biomech; 2021 May; 121():110422. PubMed ID: 33873117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture.
    Takeda I; Yamada A; Onodera H
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients.
    Wren TAL; Isakov P; Rethlefsen SA
    Gait Posture; 2023 Jul; 104():9-14. PubMed ID: 37285635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait.
    Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B
    J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development and evaluation of a fully automated markerless motion capture workflow.
    Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL
    J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.
    Schmitz A; Ye M; Shapiro R; Yang R; Noehren B
    J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Concurrent and Asynchronous Running Kinematics and Kinetics From Marker-Based and Markerless Motion Capture Under Varying Clothing Conditions.
    Kanko RM; Outerleys JB; Laende EK; Selbie WS; Deluzio KJ
    J Appl Biomech; 2024 Apr; 40(2):129-137. PubMed ID: 38237574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment.
    Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA
    J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.