BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38533045)

  • 1. A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms.
    Nishan A; M Taslim Uddin Raju S; Hossain MI; Dipto SA; M Tanvir Uddin S; Sijan A; Chowdhury MAS; Ahmad A; Mahamudul Hasan Khan M
    Heliyon; 2024 Mar; 10(6):e27779. PubMed ID: 38533045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques.
    Chowdhury MH; Shuzan MNI; Chowdhury MEH; Mahbub ZB; Uddin MM; Khandakar A; Reaz MBI
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias.
    Liu Z; Zhou B; Li Y; Tang M; Miao F
    Front Physiol; 2020; 11():575407. PubMed ID: 33013491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cuff-less blood pressure measurement based on hybrid feature selection algorithm and multi-penalty regularized regression technique.
    Khan Mamun MMR
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34633299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal.
    Hu Q; Deng X; Wang A; Yang C
    Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nocturnal Blood Pressure Estimation from Sleep Plethysmography Using Machine Learning.
    Yilmaz G; Lyu X; Ong JL; Ling LH; Penzel T; Yeo BTT; Chee MWL
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Algorithms based Cuff-less Blood Pressure Estimation from Clinically Relevant ECG and PPG Morphological Features.
    Ghosh A; Sarkar S; Liu H; Mandal S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multi-Parameter Fusion Method for Cuffless Continuous Blood Pressure Estimation Based on Electrocardiogram and Photoplethysmogram.
    Ma G; Zhang J; Liu J; Wang L; Yu Y
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal.
    Dagamseh A; Qananwah Q; Al Quran H; Shaker Ibrahim K
    Biomed Opt Express; 2021 Dec; 12(12):7732-7751. PubMed ID: 35003863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms.
    Ibtehaz N; Mahmud S; Chowdhury MEH; Khandakar A; Salman Khan M; Ayari MA; Tahir AM; Rahman MS
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics.
    Samimi H; Dajani HR
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.