These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38533329)

  • 1. Fe(III) bioreduction kinetics in anaerobic batch and continuous stirred tank reactors with acidophilic bacteria relevant for bioleaching of limonitic laterites.
    Hubau A; Joulian C; Tris H; Pino-Herrera D; Becquet C; Guezennec AG
    Front Microbiol; 2024; 15():1358788. PubMed ID: 38533329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do ferrous iron-oxidizing acidophiles (
    Hetz SA; Schippers A
    Front Microbiol; 2024; 15():1359019. PubMed ID: 38655078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goethite dissolution by acidophilic bacteria.
    Stanković S; Schippers A
    Front Microbiol; 2024; 15():1360018. PubMed ID: 38846564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of Transition Metals From Limonitic Laterite Deposits and Reassessment of the Multiple Roles of Sulfur-Oxidizing Acidophiles in the Process.
    Johnson DB; Smith SL; Santos AL
    Front Microbiol; 2021; 12():703177. PubMed ID: 34381430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates.
    Breuker A; Schippers A
    Res Microbiol; 2024; 175(1-2):104110. PubMed ID: 37544391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium (VI) Inhibition of Low pH Bioleaching of Limonitic Nickel-Cobalt Ore.
    Santos AL; Dybowska A; Schofield PF; Herrington RJ; Cibin G; Johnson DB
    Front Microbiol; 2021; 12():802991. PubMed ID: 35087502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues.
    Kremser K; Maltschnig M; Schön H; Jandric A; Gajdosik M; Vaculovic T; Kucera J; Guebitz GM
    Waste Manag; 2022 May; 144():182-190. PubMed ID: 35378357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of bioleaching of a sulfidic copper ore (chalcopyrite) in column percolators and in stirred-tank bioreactors including microbial community analysis.
    Bakhti A; Moghimi H; Bozorg A; Stankovic S; Manafi Z; Schippers A
    Chemosphere; 2024 Feb; 349():140945. PubMed ID: 38104736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors.
    Spolaore P; Joulian C; Gouin J; Morin D; d'Hugues P
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):441-8. PubMed ID: 20890755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential-Anaerobic and Sequential-Aerobic Bioleaching of Metals (Ni, Mo, Al and V) from Spent Petroleum Catalyst in Stirred Tank Batch Reactor: A Comparative Study.
    Srichandan H; Mishra S; Singh PK; Blight K; Singh S
    Indian J Microbiol; 2022 Mar; 62(1):70-78. PubMed ID: 35068606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions.
    Benaiges-Fernandez R; Palau J; Offeddu FG; Cama J; Urmeneta J; Soler JM; Dold B
    Mar Environ Res; 2019 Oct; 151():104782. PubMed ID: 31514974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors.
    Tapia J; Dueñas A; Cheje N; Soclle G; Patiño N; Ancalla W; Tenorio S; Denos J; Taco H; Cao W; Alexandrino DAM; Jia Z; Vasconcelos V; Carvalho MF; Lazarte A
    Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.
    Marrero J; Coto O; Goldmann S; Graupner T; Schippers A
    Environ Sci Technol; 2015 Jun; 49(11):6674-82. PubMed ID: 25923144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic bioreduction of elemental sulfur improves bioavailability of Fe (III) oxides for bioremediation.
    Liu Y; Zhao Q; Liao C; Tian L; Yan X; Li N; Wang X
    Sci Total Environ; 2023 Feb; 858(Pt 2):159794. PubMed ID: 36374751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
    Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.
    Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB
    Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct Roles of Acidophiles in Complete Oxidation of High-Sulfur Ferric Leach Product of Zinc Sulfide Concentrate.
    Muravyov M; Panyushkina A
    Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32164331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ferric Iron Reduction in Extreme Acidophiles.
    Malik L; Hedrich S
    Front Microbiol; 2021; 12():818414. PubMed ID: 35095822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.