These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38533659)
1. Relation between the relative abundance and collapse of Aphanizomenon flos-aquae and microbial antagonism in Upper Klamath Lake, Oregon. Underwood JC; Hall NC; Mumford AC; Harvey RW; Bliznik PA; Jeanis KM FEMS Microbiol Ecol; 2024 Apr; 100(5):. PubMed ID: 38533659 [TBL] [Abstract][Full Text] [Related]
2. Effects of harmful algal blooms and associated water-quality on endangered Lost River and shortnose suckers. Burdick SM; Hewitt DA; Martin BA; Schenk L; Rounds SA Harmful Algae; 2020 Jul; 97():101847. PubMed ID: 32732045 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the dynamics of groundwater, lakebed transport, nutrient inflow and algal blooms in Upper Klamath Lake, Oregon, USA. Essaid HI; Kuwabara JS; Corson-Dosch NT; Carter JL; Topping BR Sci Total Environ; 2021 Apr; 765():142768. PubMed ID: 33097260 [TBL] [Abstract][Full Text] [Related]
5. A Systematic Literature Review for Evidence of Aphanizomenon flos-aquae Toxigenicity in Recreational Waters and Toxicity of Dietary Supplements: 2000⁻2017. Lyon-Colbert A; Su S; Cude C Toxins (Basel); 2018 Jun; 10(7):. PubMed ID: 29933577 [TBL] [Abstract][Full Text] [Related]
6. Mycosporine-like Amino Acids and Other Phytochemicals Directly Detected by High-Resolution NMR on Klamath (Aphanizomenon flos-aquae) Blue-Green Algae. Righi V; Parenti F; Schenetti L; Mucci A J Agric Food Chem; 2016 Sep; 64(35):6708-15. PubMed ID: 27537083 [TBL] [Abstract][Full Text] [Related]
7. Cyanophage infections reduce photosynthetic activity and expression of CO Antosiak A; Šulčius S; Malec P; Tokodi N; Łobodzińska A; Dziga D Harmful Algae; 2022 Jul; 116():102215. PubMed ID: 35710200 [TBL] [Abstract][Full Text] [Related]
8. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake. Li H; Barber M; Lu J; Goel R Water Res; 2020 Oct; 185():116292. PubMed ID: 33086464 [TBL] [Abstract][Full Text] [Related]
9. Selective monoamine oxidase B inhibition by an Aphanizomenon flos-aquae extract and by its constitutive active principles phycocyanin and mycosporine-like amino acids. Scoglio S; Benedetti Y; Benvenuti F; Battistelli S; Canestrari F; Benedetti S Phytomedicine; 2014 Jun; 21(7):992-7. PubMed ID: 24690316 [TBL] [Abstract][Full Text] [Related]
10. Diversity of Aphanizomenon flos-aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Laamanen MJ; Forsström L; Sivonen K Appl Environ Microbiol; 2002 Nov; 68(11):5296-303. PubMed ID: 12406717 [TBL] [Abstract][Full Text] [Related]
11. Interactions between Ciliate Species and Kosiba J; Krztoń W; Koreiviené J; Tarcz S; Wilk-Woźniak E Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429814 [No Abstract] [Full Text] [Related]
12. Biological and chemical factors driving the temporal distribution of cyanobacteria and heterotrophic bacteria in a eutrophic lake (West Lake, China). Song H; Xu J; Lavoie M; Fan X; Liu G; Sun L; Fu Z; Qian H Appl Microbiol Biotechnol; 2017 Feb; 101(4):1685-1696. PubMed ID: 27847990 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effects of Aphanizomenon flos-aquae constituents on human UDP-glucose dehydrogenase activity. Scoglio S; Lo Curcio V; Catalani S; Palma F; Battistelli S; Benedetti S J Enzyme Inhib Med Chem; 2016 Dec; 31(6):1492-7. PubMed ID: 26903444 [TBL] [Abstract][Full Text] [Related]
14. Risk assessment of microcystin in dietary Aphanizomenon flos-aquae. Schaeffer DJ; Malpas PB; Barton LL Ecotoxicol Environ Saf; 1999 Sep; 44(1):73-80. PubMed ID: 10499991 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of Mycosporine-like Amino Acids (MAAs) from the Bloom-Forming Cyanobacteria Zhang H; Jiang Y; Zhou C; Chen Y; Yu G; Zheng L; Guan H; Li R Molecules; 2022 Mar; 27(5):. PubMed ID: 35268833 [TBL] [Abstract][Full Text] [Related]
16. Non-targeted metabolomic profiling of filamentous cyanobacteria Aphanizomenon flos-aquae exposed to a concentrated culture filtrate of Microcystis aeruginosa. Jin H; Ma H; Gan N; Wang H; Li Y; Wang L; Song L Harmful Algae; 2022 Jan; 111():102170. PubMed ID: 35016758 [TBL] [Abstract][Full Text] [Related]
17. Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams. Gillett ND; Pan Y; Eli Asarian J; Kann J Sci Total Environ; 2016 Jan; 541():1382-1392. PubMed ID: 26479912 [TBL] [Abstract][Full Text] [Related]
18. Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. Bižić-Ionescu M; Amann R; Grossart HP PLoS One; 2014; 9(11):e113611. PubMed ID: 25419654 [TBL] [Abstract][Full Text] [Related]
19. 7-epi-cylindrospermopsin and microcystin producers among diverse Anabaena/Dolichospermum/Aphanizomenon CyanoHABs in Oregon, USA. Dreher TW; Foss AJ; Davis EW; Mueller RS Harmful Algae; 2022 Jul; 116():102241. PubMed ID: 35710201 [TBL] [Abstract][Full Text] [Related]
20. High-throughput DNA sequencing reveals the dominance of pico- and other filamentous cyanobacteria in an urban freshwater Lake. Li H; Alsanea A; Barber M; Goel R Sci Total Environ; 2019 Apr; 661():465-480. PubMed ID: 30677691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]