BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38533761)

  • 1. The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study.
    Satish V; Repaka R
    Electromagn Biol Med; 2024 Apr; 43(1-2):125-134. PubMed ID: 38533761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave ablation trocar for ablating cancerous tumors: a numerical analysis.
    Satish V; Repaka R
    Med Biol Eng Comput; 2023 May; 61(5):1113-1131. PubMed ID: 36680706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Safety and efficacy of intracavitary microwave ablation in hepatic gland tumours: Numerical and in vitro studies.
    Satish V; Repaka R
    Proc Inst Mech Eng H; 2023 Jul; 237(7):905-915. PubMed ID: 37300398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FEM simulation of tapered cap floating sleeve antenna for hepatocellular carcinoma therapy.
    Maini S
    Electromagn Biol Med; 2016; 35(2):152-60. PubMed ID: 26115000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optimal sliding choke antenna for hepatic microwave ablation.
    Prakash P; Converse MC; Webster JG; Mahvi DM
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2470-6. PubMed ID: 19535312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling of microwave liver ablation with a variable-porosity medium approach.
    Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP
    Comput Methods Programs Biomed; 2022 Feb; 214():106569. PubMed ID: 34906785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave ablation modeling with AMICA antenna: Validation by means a numerical analysis.
    Cafarchio A; Iasiello M; Vanoli GP; Andreozzi A
    Comput Biol Med; 2023 Dec; 167():107669. PubMed ID: 37948968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Percutaneous Application of High Power Microwave Ablation With 150 W for the Treatment of Tumors in Lung, Liver, and Kidney: A Preliminary Experience.
    Lanza C; Carriero S; Ascenti V; Tintori J; Ricapito F; Lavorato R; Biondetti P; Angileri SA; Piacentino F; Fontana F; Venturini M; Ierardi AM; Carrafiello G
    Technol Cancer Res Treat; 2023; 22():15330338231185277. PubMed ID: 37608585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and numerical study of microwave ablation on ex-vivo porcine lung.
    Gao X; Tian Z; Cheng Y; Geng B; Chen S; Nan Q
    Electromagn Biol Med; 2019; 38(4):249-261. PubMed ID: 31554439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer.
    Gangadhara B; Mariappan P
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of microwave ablation for thermal treatment of solid tumors with different shapes and sizes-A computational approach.
    Tehrani MHH; Soltani M; Kashkooli FM; Raahemifar K
    PLoS One; 2020; 15(6):e0233219. PubMed ID: 32542034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New microwave ablation system for unresectable liver tumors that forms large, spherical ablation zones.
    Imajo K; Tomeno W; Kanezaki M; Honda Y; Kessoku T; Ogawa Y; Yoshida K; Yoneda M; Kirikoshi H; Ono M; Kaneta T; Inoue T; Teratani T; Saito S; Nakajima A
    J Gastroenterol Hepatol; 2018 Dec; 33(12):2007-2014. PubMed ID: 29851164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D modeling of vector/edge finite element method for multi-ablation technique for large tumor-computational approach.
    Boregowda G; Mariappan P
    PLoS One; 2023; 18(7):e0289262. PubMed ID: 37506084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue.
    Neira LM; Mays RO; Sawicki JF; Schulman A; Harter J; Wilke LG; Behdad N; Van Veen BD; Hagness SC
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of blood flow parameters on temperature distribution during liver tumor microwave ablation.
    Wang J; Wu S; Wu Z; Gao H; Huang S
    Front Biosci (Landmark Ed); 2021 Sep; 26(9):504-516. PubMed ID: 34590463
    [No Abstract]   [Full Text] [Related]  

  • 20. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.