These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38533794)

  • 1. Optimizing precision medicine for second-step depression treatment: a machine learning approach.
    Curtiss J; Smoller JW; Pedrelli P
    Psychol Med; 2024 Jul; 54(10):2361-2368. PubMed ID: 38533794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1.
    Nunez JJ; Nguyen TT; Zhou Y; Cao B; Ng RT; Chen J; Frey BN; Milev R; Müller DJ; Rotzinger S; Soares CN; Uher R; Kennedy SH; Lam RW
    PLoS One; 2021; 16(6):e0253023. PubMed ID: 34181661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal multi-step predictive modeling of remission in major depressive disorder using early stage treatment data; STAR*D based machine learning approach.
    Salem H; Huynh T; Topolski N; Mwangi B; Trivedi MH; Soares JC; Rush AJ; Selvaraj S
    J Affect Disord; 2023 Mar; 324():286-293. PubMed ID: 36584711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Prediction Model for Evaluating Treatment-Resistant Depression.
    Kautzky A; Baldinger-Melich P; Kranz GS; Vanicek T; Souery D; Montgomery S; Mendlewicz J; Zohar J; Serretti A; Lanzenberger R; Kasper S
    J Clin Psychiatry; 2017 Feb; 78(2):215-222. PubMed ID: 28068461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized prognostic prediction of treatment outcome for depressed patients in a naturalistic psychiatric hospital setting: A comparison of machine learning approaches.
    Webb CA; Cohen ZD; Beard C; Forgeard M; Peckham AD; Björgvinsson T
    J Consult Clin Psychol; 2020 Jan; 88(1):25-38. PubMed ID: 31841022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting treatment response using EEG in major depressive disorder: A machine-learning meta-analysis.
    Watts D; Pulice RF; Reilly J; Brunoni AR; Kapczinski F; Passos IC
    Transl Psychiatry; 2022 Aug; 12(1):332. PubMed ID: 35961967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benefits of Sequentially Adding Cognitive-Behavioral Therapy or Antidepressant Medication for Adults With Nonremitting Depression.
    Dunlop BW; LoParo D; Kinkead B; Mletzko-Crowe T; Cole SP; Nemeroff CB; Mayberg HS; Craighead WE
    Am J Psychiatry; 2019 Apr; 176(4):275-286. PubMed ID: 30764648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression: A Prespecified Secondary Analysis of a Randomized Clinical Trial.
    Rajpurkar P; Yang J; Dass N; Vale V; Keller AS; Irvin J; Taylor Z; Basu S; Ng A; Williams LM
    JAMA Netw Open; 2020 Jun; 3(6):e206653. PubMed ID: 32568399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REVAMP - Research Evaluating the Value of Augmenting Medication with Psychotherapy: rationale and design.
    Trivedi MH; Kocsis JH; Thase ME; Morris DW; Wisniewski SR; Leon AC; Gelenberg AJ; Klein DN; Niederehe G; Schatzberg AF; Ninan PT; Keller MB
    Psychopharmacol Bull; 2008; 41(4):5-33. PubMed ID: 19015627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Machine Learning to Predict Remission in Patients With Major Depressive Disorder Treated With Desvenlafaxine.
    Benoit JRA; Dursun SM; Greiner R; Cao B; Brown MRG; Lam RW; Greenshaw AJ
    Can J Psychiatry; 2022 Jan; 67(1):39-47. PubMed ID: 34379019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-trial prediction of treatment outcome in depression: a machine learning approach.
    Chekroud AM; Zotti RJ; Shehzad Z; Gueorguieva R; Johnson MK; Trivedi MH; Cannon TD; Krystal JH; Corlett PR
    Lancet Psychiatry; 2016 Mar; 3(3):243-50. PubMed ID: 26803397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inclusion of genetic variants in an ensemble of gradient boosting decision trees does not improve the prediction of citalopram treatment response.
    Shumake J; Mallard TT; McGeary JE; Beevers CG
    Sci Rep; 2021 Feb; 11(1):3780. PubMed ID: 33580158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early antidepressant treatment response prediction in major depression using clinical and TPH2 DNA methylation features based on machine learning approaches.
    Chen B; Jiao Z; Shen T; Fan R; Chen Y; Xu Z
    BMC Psychiatry; 2023 May; 23(1):299. PubMed ID: 37127594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision medicine for long-term depression outcomes using the Personalized Advantage Index approach: cognitive therapy or interpersonal psychotherapy?
    van Bronswijk SC; DeRubeis RJ; Lemmens LHJM; Peeters FPML; Keefe JR; Cohen ZD; Huibers MJH
    Psychol Med; 2021 Jan; 51(2):279-289. PubMed ID: 31753043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidepressant monotherapy vs sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression.
    Segal ZV; Bieling P; Young T; MacQueen G; Cooke R; Martin L; Bloch R; Levitan RD
    Arch Gen Psychiatry; 2010 Dec; 67(12):1256-64. PubMed ID: 21135325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Connectivity of the Subcallosal Cingulate Cortex And Differential Outcomes to Treatment With Cognitive-Behavioral Therapy or Antidepressant Medication for Major Depressive Disorder.
    Dunlop BW; Rajendra JK; Craighead WE; Kelley ME; McGrath CL; Choi KS; Kinkead B; Nemeroff CB; Mayberg HS
    Am J Psychiatry; 2017 Jun; 174(6):533-545. PubMed ID: 28335622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for antidepressant treatment selection in depression.
    Arnold PIM; Janzing JGE; Hommersom A
    Drug Discov Today; 2024 Aug; 29(8):104068. PubMed ID: 38925472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining clinical variables to optimize prediction of antidepressant treatment outcomes.
    Iniesta R; Malki K; Maier W; Rietschel M; Mors O; Hauser J; Henigsberg N; Dernovsek MZ; Souery D; Stahl D; Dobson R; Aitchison KJ; Farmer A; Lewis CM; McGuffin P; Uher R
    J Psychiatr Res; 2016 Jul; 78():94-102. PubMed ID: 27089522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Prediction of Quality of Life Improvement During Antidepressant Treatment of Patients With Major Depressive Disorder: A STAR*D and CAN-BIND-1 Report.
    Phaterpekar T; Nunez JJ; Morton E; Liu YS; Cao B; Frey BN; Milev RV; Müller DJ; Rotzinger S; Soares CN; Taylor VH; Uher R; Kennedy SH; Lam RW
    J Clin Psychiatry; 2023 Nov; 85(1):. PubMed ID: 37967350
    [No Abstract]   [Full Text] [Related]  

  • 20. What alternatives to first-line therapy for depression are effective?
    Manning JS
    J Clin Psychiatry; 2010; 71 Suppl 1():10-5. PubMed ID: 20977870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.