These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Sun C; Gradzielski M Adv Colloid Interface Sci; 2022 Feb; 300():102579. PubMed ID: 34924169 [TBL] [Abstract][Full Text] [Related]
5. Plasmon Modulated Upconversion Biosensors. Molkenova A; Choi HE; Park JM; Lee JH; Kim KS Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979518 [TBL] [Abstract][Full Text] [Related]
6. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review. Borse S; Rafique R; Murthy ZVP; Park TJ; Kailasa SK Analyst; 2022 Jul; 147(14):3155-3179. PubMed ID: 35730445 [TBL] [Abstract][Full Text] [Related]
7. Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding. Huang K; Idris NM; Zhang Y Small; 2016 Feb; 12(7):836-52. PubMed ID: 26681103 [TBL] [Abstract][Full Text] [Related]
8. Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles. Schroter A; Hirsch T Small; 2024 Apr; 20(14):e2306042. PubMed ID: 37986189 [TBL] [Abstract][Full Text] [Related]
9. Lanthanide-Doped Near-Infrared Nanoparticles for Biophotonics. Li H; Wang X; Ohulchanskyy TY; Chen G Adv Mater; 2021 Feb; 33(6):e2000678. PubMed ID: 32638426 [TBL] [Abstract][Full Text] [Related]
10. Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies. Resch-Genger U; Gorris HH Anal Bioanal Chem; 2017 Oct; 409(25):5855-5874. PubMed ID: 28710516 [TBL] [Abstract][Full Text] [Related]
11. Upconversion polymeric nanofibers containing lanthanide-doped nanoparticles via electrospinning. Bao Y; Luu QA; Zhao Y; Fong H; May PS; Jiang C Nanoscale; 2012 Dec; 4(23):7369-75. PubMed ID: 23026874 [TBL] [Abstract][Full Text] [Related]
12. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Li H; Wang X; Huang D; Chen G Nanotechnology; 2020 Feb; 31(7):072001. PubMed ID: 31627201 [TBL] [Abstract][Full Text] [Related]
14. Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Gorris HH; Resch-Genger U Anal Bioanal Chem; 2017 Oct; 409(25):5875-5890. PubMed ID: 28687881 [TBL] [Abstract][Full Text] [Related]
15. Combating Concentration Quenching in Upconversion Nanoparticles. Chen B; Wang F Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900 [TBL] [Abstract][Full Text] [Related]
16. The Spectroscopic Properties and Microscopic Imaging of Thulium-Doped Upconversion Nanoparticles Excited at Different NIR-II Light. Peng T; Pu R; Wang B; Zhu Z; Liu K; Wang F; Wei W; Liu H; Zhan Q Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34068452 [TBL] [Abstract][Full Text] [Related]
17. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Han S; Deng R; Xie X; Liu X Angew Chem Int Ed Engl; 2014 Oct; 53(44):11702-15. PubMed ID: 25204638 [TBL] [Abstract][Full Text] [Related]
18. Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus Agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor. Tian R; Zhao S; Liu G; Chen H; Ma L; You H; Liu C; Wang Z Biomaterials; 2019 Aug; 212():64-72. PubMed ID: 31103947 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. Ma Q; Wang J; Li Z; Lv X; Liang L; Yuan Q Small; 2019 Aug; 15(32):e1804969. PubMed ID: 30761729 [TBL] [Abstract][Full Text] [Related]
20. The intersection of CMOS microsystems and upconversion nanoparticles for luminescence bioimaging and bioassays. Wei L; Doughan S; Han Y; DaCosta MV; Krull UJ; Ho D Sensors (Basel); 2014 Sep; 14(9):16829-55. PubMed ID: 25211198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]