BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38534234)

  • 1. Integrating a Fundus Camera with High-Frequency Ultrasound for Precise Ocular Lesion Assessment.
    Rossi A; Zeng Y; Rahimi M; Son T; Heiferman MJ; Gong C; Sun X; Soleimani M; Djalilian AR; Humayun MS; Zhou Q; Yao X
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MULTIMODAL IMAGING IN VORTEX VEIN VARICES.
    Veronese C; Staurenghi G; Pellegrini M; Maiolo C; Primavera L; Morara M; Armstrong GW; Ciardella AP
    Retin Cases Brief Rep; 2019 Summer; 13(3):260-265. PubMed ID: 28333853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral fluorescein angiography with the confocal scanning laser ophthalmoscope.
    Garcia CR; Rivero ME; Bartsch DU; Ishiko S; Takamiya A; Fukui K; Hirokawa H; Clark T; Yoshida A; Freeman WR
    Ophthalmology; 1999 Jun; 106(6):1114-8. PubMed ID: 10366079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of Ultrasonography and Ultra-Widefield Fundus Photographs for Measurements of the Diameter of Choroidal and Retinal Tumors.
    Wang Q; Yang JY; Wei WB; Yang Q
    Ophthalmol Ther; 2023 Dec; 12(6):3001-3011. PubMed ID: 37603161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of 50° handheld fundus camera versus ultra-widefield table-top fundus camera for diabetic retinopathy detection and grading.
    Midena E; Zennaro L; Lapo C; Torresin T; Midena G; Frizziero L
    Eye (Lond); 2023 Oct; 37(14):2994-2999. PubMed ID: 36854818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ULTRA-WIDEFIELD MULTIMODAL IMAGING OF PRIMARY VITREORETINAL LYMPHOMA.
    Lavine JA; Singh AD; Sharma S; Baynes K; Lowder CY; Srivastava SK
    Retina; 2019 Oct; 39(10):1861-1871. PubMed ID: 30044267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparity between fundus camera and scanning laser ophthalmoscope indocyanine green imaging of retinal pigment epithelium detachments.
    Flower RW; Csaky KG; Murphy RP
    Retina; 1998; 18(3):260-8. PubMed ID: 9654419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal imaging in infants.
    Fung THM; Kuet ML; Patel CK; Holden R; Ojha S; Amoaku WMK
    Surv Ophthalmol; 2021; 66(6):933-950. PubMed ID: 33524458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of Retinal Lesion Screening in Von Hippel-Lindau Patients With Widefield Color Fundus Imaging Versus Widefield FA.
    Golas L; Skondra D; Ittiara S; Bajic N; Jeng-Miller KW; Mukai S; Yonekawa Y; Blair MP
    Ophthalmic Surg Lasers Imaging Retina; 2019 Nov; 50(11):e260-e265. PubMed ID: 31755976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heidelberg Spectralis ultra-widefield fundus fluorescein angiography in infants.
    Fung TH; Yusuf IH; Xue K; Smith LM; Patel CK
    Am J Ophthalmol; 2015 Jan; 159(1):78-84.e1-2. PubMed ID: 25250881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy.
    Cui Y; Zhu Y; Wang JC; Lu Y; Zeng R; Katz R; Vingopoulos F; Le R; Laíns I; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Br J Ophthalmol; 2021 Apr; 105(4):577-581. PubMed ID: 32591347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new procedure for fundus photography and fluorescein angiography in small laboratory animal eyes.
    DiLoreto D; Grover DA; del Cerro C; del Cerro M
    Curr Eye Res; 1994 Feb; 13(2):157-61. PubMed ID: 8194363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundus camera guided photoacoustic ophthalmoscopy.
    Liu T; Li H; Song W; Jiao S; Zhang HF
    Curr Eye Res; 2013 Dec; 38(12):1229-34. PubMed ID: 24131226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes.
    Hawes NL; Smith RS; Chang B; Davisson M; Heckenlively JR; John SW
    Mol Vis; 1999 Sep; 5():22. PubMed ID: 10493779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital ocular fundus imaging: a review.
    Bernardes R; Serranho P; Lobo C
    Ophthalmologica; 2011; 226(4):161-81. PubMed ID: 21952522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing portable widefield fundus camera for teleophthalmology: Technical challenges and potential solutions.
    Yao X; Son T; Ma J
    Exp Biol Med (Maywood); 2022 Feb; 247(4):289-299. PubMed ID: 34878934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Murine fundus fluorescein angiography: An alternative approach using a handheld camera.
    Ehrenberg M; Ehrenberg S; Schwob O; Benny O
    Exp Eye Res; 2016 Jul; 148():74-78. PubMed ID: 27260483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound in ocular oncology: Technical advances, clinical applications, and limitations.
    Kadakia A; Zhang J; Yao X; Zhou Q; Heiferman MJ
    Exp Biol Med (Maywood); 2023 May; 248(5):371-379. PubMed ID: 37212384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.