These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 38534257)

  • 41. Synaptic Transistors Based on PVA: Chitosan Biopolymer Blended Electric-Double-Layer with High Ionic Conductivity.
    Lee DH; Park H; Cho WJ
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pseudo-transistors for emerging neuromorphic electronics.
    Fu J; Wang J; He X; Ming J; Wang L; Wang Y; Shao H; Zheng C; Xie L; Ling H
    Sci Technol Adv Mater; 2023; 24(1):2180286. PubMed ID: 36970452
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gate-Controlled Neuromorphic Functional Transition in an Electrochemical Graphene Transistor.
    Yu C; Li S; Pan Z; Liu Y; Wang Y; Zhou S; Gao Z; Tian H; Jiang K; Wang Y; Zhang J
    Nano Lett; 2024 Feb; 24(5):1620-1628. PubMed ID: 38277130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organic electrochemical transistors in bioelectronic circuits.
    Rashid RB; Ji X; Rivnay J
    Biosens Bioelectron; 2021 Oct; 190():113461. PubMed ID: 34197997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications.
    Li C; Xiong T; Yu P; Fei J; Mao L
    ACS Appl Bio Mater; 2021 Jan; 4(1):71-84. PubMed ID: 35014277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics.
    Zhu J; Yang Y; Jia R; Liang Z; Zhu W; Rehman ZU; Bao L; Zhang X; Cai Y; Song L; Huang R
    Adv Mater; 2018 May; 30(21):e1800195. PubMed ID: 29665150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing.
    Kireev D; Liu S; Jin H; Patrick Xiao T; Bennett CH; Akinwande D; Incorvia JAC
    Nat Commun; 2022 Jul; 13(1):4386. PubMed ID: 35902599
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anisotropic Signal Processing with Trigonal Selenium Nanosheet Synaptic Transistors.
    Qin JK; Zhou F; Wang J; Chen J; Wang C; Guo X; Zhao S; Pei Y; Zhen L; Ye PD; Lau SP; Zhu Y; Xu CY; Chai Y
    ACS Nano; 2020 Aug; 14(8):10018-10026. PubMed ID: 32806043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial Visual Synaptic Architecture with High-Linearity Light-Modulated Weight for Optoelectronic Neuromorphic Computing.
    Liu Y; Wang B; Wu L; Huang L; Lin L; Xiang L; Liu D; Zhang S; Zhu C; Tao Y; Li D; Pan A
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37885218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition.
    Kim S; Yoon J; Kim HD; Choi SJ
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25479-86. PubMed ID: 26512729
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emulating synaptic response in n- and p-channel MoS
    Bhattacharjee S; Wigchering R; Manning HG; Boland JJ; Hurley PK
    Sci Rep; 2020 Jul; 10(1):12178. PubMed ID: 32699332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-Gated MoS
    Bao L; Zhu J; Yu Z; Jia R; Cai Q; Wang Z; Xu L; Wu Y; Yang Y; Cai Y; Huang R
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41482-41489. PubMed ID: 31597432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing.
    Bian H; Goh YY; Liu Y; Ling H; Xie L; Liu X
    Adv Mater; 2021 Nov; 33(46):e2006469. PubMed ID: 33837601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Covalent Organic Frameworks for Neuromorphic Devices.
    Zhou K; Jia Z; Zhou Y; Ding G; Ma XQ; Niu W; Han ST; Zhao J; Zhou Y
    J Phys Chem Lett; 2023 Aug; 14(32):7173-7192. PubMed ID: 37540588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities.
    Yu F; Zhu LQ; Gao WT; Fu YM; Xiao H; Tao J; Zhou JM
    ACS Appl Mater Interfaces; 2018 May; 10(19):16881-16886. PubMed ID: 29687712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lateral heterostructures of WS
    Park J; Kim JO; Kang SW
    Sci Rep; 2024 Mar; 14(1):6922. PubMed ID: 38519613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuromorphic Nanoionics for Human-Machine Interaction: From Materials to Applications.
    Liu X; Sun C; Ye X; Zhu X; Hu C; Tan H; He S; Shao M; Li RW
    Adv Mater; 2024 Sep; 36(37):e2311472. PubMed ID: 38421081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuro-Transistor Based on UV-Treated Charge Trapping in MoTe
    Rehman S; Khan MF; Rahmani MK; Kim H; Patil H; Khan SA; Kang MH; Kim DK
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33255403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.