These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 38534387)

  • 1. All but Small: miRNAs from Wharton's Jelly-Mesenchymal Stromal Cell Small Extracellular Vesicles Rescue Premature White Matter Injury after Intranasal Administration.
    Tscherrig V; Steinfort M; Haesler V; Surbek D; Schoeberlein A; Joerger-Messerli MS
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA Cargo in Wharton's Jelly MSC Small Extracellular Vesicles: Key Functionality to In Vitro Prevention and Treatment of Premature White Matter Injury.
    Tscherrig V; Cottagnoud S; Haesler V; Renz P; Surbek D; Schoeberlein A; Joerger-Messerli MS
    Stem Cell Rev Rep; 2023 Oct; 19(7):2447-2464. PubMed ID: 37523115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Wharton's Jelly Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Drive Oligodendroglial Maturation by Restraining MAPK/ERK and Notch Signaling Pathways.
    Joerger-Messerli MS; Thomi G; Haesler V; Keller I; Renz P; Surbek DV; Schoeberlein A
    Front Cell Dev Biol; 2021; 9():622539. PubMed ID: 33869172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Vesicle-Derived microRNAs of Human Wharton's Jelly Mesenchymal Stromal Cells May Activate Endogenous VEGF-A to Promote Angiogenesis.
    Chinnici CM; Iannolo G; Cittadini E; Carreca AP; Nascari D; Timoneri F; Bella MD; Cuscino N; Amico G; Carcione C; Conaldi PG
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal Stem Cell-derived Extracellular Vesicles Prevent Experimental Bronchopulmonary Dysplasia Complicated By Pulmonary Hypertension.
    Sharma M; Bellio MA; Benny M; Kulandavelu S; Chen P; Janjindamai C; Han C; Chang L; Sterling S; Williams K; Damianos A; Batlahally S; Kelly K; Aguilar-Caballero D; Zambrano R; Chen S; Huang J; Wu S; Hare JM; Schmidt A; Khan A; Young K
    Stem Cells Transl Med; 2022 Aug; 11(8):828-840. PubMed ID: 35758326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells are Ineffective for Myocardial Repair in an Immunodeficient Rat Model of Chronic Ischemic Cardiomyopathy.
    Tang XL; Nasr M; Zheng S; Zoubul T; Stephan JK; Uchida S; Singhal R; Khan A; Gumpert A; Bolli R; Wysoczynski M
    Stem Cell Rev Rep; 2023 Oct; 19(7):2429-2446. PubMed ID: 37500831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells.
    Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA
    Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered expression of microRNAs in the neuronal differentiation of human Wharton's Jelly mesenchymal stem cells.
    Zhuang H; Zhang R; Zhang S; Shu Q; Zhang D; Xu G
    Neurosci Lett; 2015 Jul; 600():69-74. PubMed ID: 26049006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wharton's jelly-derived mesenchymal stem cells attenuate sepsis-induced organ injury partially via cholinergic anti-inflammatory pathway activation.
    Capcha JMC; Rodrigues CE; Moreira RS; Silveira MD; Dourado P; Dos Santos F; Irigoyen MC; Jensen L; Garnica MR; Noronha IL; Andrade L; Gomes SA
    Am J Physiol Regul Integr Comp Physiol; 2020 Jan; 318(1):R135-R147. PubMed ID: 31596111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Wharton's jelly-derived mesenchymal stromal cells promote bone formation in immunodeficient mice when administered into a bone microenvironment.
    Cabrera-Pérez R; Ràfols-Mitjans A; Roig-Molina Á; Beltramone S; Vives J; Batlle-Morera L
    J Transl Med; 2023 Nov; 21(1):802. PubMed ID: 37950242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment With Human Wharton's Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction.
    Cóndor JM; Rodrigues CE; Sousa Moreira Rd; Canale D; Volpini RA; Shimizu MH; Camara NO; Noronha Ide L; Andrade L
    Stem Cells Transl Med; 2016 Aug; 5(8):1048-57. PubMed ID: 27280799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Wharton Jelly-Derived Mesenchymal Stromal Cells and Their Conditioned Media in the Treatment of a Rat Spinal Cord Injury.
    Chudickova M; Vackova I; Machova Urdzikova L; Jancova P; Kekulova K; Rehorova M; Turnovcova K; Jendelova P; Kubinova S
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells Suppress CD4 Expressing T Cells Through Transforming Growth Factor Beta and Adenosine Signaling in a Canine Model.
    Crain SK; Robinson SR; Thane KE; Davis AM; Meola DM; Barton BA; Yang VK; Hoffman AM
    Stem Cells Dev; 2019 Feb; 28(3):212-226. PubMed ID: 30412034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Therapeutic Role of microRNAs of Small Extracellular Vesicles from Human Mesenchymal Stromal/Stem Cells in Treatment of Experimental Traumatic Brain Injury.
    Zhang Y; Zhang Y; Chopp M; Pang H; Chen L; Zhang ZG; Mahmood A; Xiong Y
    J Neurotrauma; 2023 Apr; 40(7-8):758-771. PubMed ID: 36394949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual production of human mesenchymal stromal cells and derived extracellular vesicles in a dissolvable microcarrier-based stirred culture system.
    Bandarra-Tavares H; Franchi-Mendes T; Ulpiano C; Morini S; Kaur N; Harris-Becker A; Vemuri MC; Cabral JMS; Fernandes-Platzgummer A; da Silva CL
    Cytotherapy; 2024 Jul; 26(7):749-756. PubMed ID: 38506771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing insulin sensitivity in type 2 diabetes mellitus using apelin-loaded small extracellular vesicles from Wharton's jelly-derived mesenchymal stem cells: a novel therapeutic approach.
    Cui J; Wang M; Zhang W; Sun J; Zhang Y; Zhao L; Hong Z; Li D; Huang YX; Zhang N; Chen Y
    Diabetol Metab Syndr; 2024 Apr; 16(1):84. PubMed ID: 38622732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells.
    Liau LL; Ruszymah BHI; Ng MH; Law JX
    Curr Res Transl Med; 2020 Jan; 68(1):5-16. PubMed ID: 31543433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton's Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair.
    Choi UY; Joshi HP; Payne S; Kim KT; Kyung JW; Choi H; Cooke MJ; Kwon SY; Roh EJ; Sohn S; Shoichet MS; Han I
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circ6401, a novel circular RNA, is implicated in repair of the damaged endometrium by Wharton's jelly-derived mesenchymal stem cells through regulation of the miR-29b-1-5p/RAP1B axis.
    Shi Q; Sun B; Wang D; Zhu Y; Zhao X; Yang X; Zhang Y
    Stem Cell Res Ther; 2020 Dec; 11(1):520. PubMed ID: 33261656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stromal cells from umbilical cord Wharton's jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact.
    Oppliger B; Joerger-Messerli MS; Simillion C; Mueller M; Surbek DV; Schoeberlein A
    Cytotherapy; 2017 Jul; 19(7):829-838. PubMed ID: 28457739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.