These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 38534387)

  • 21. Wharton's jelly mesenchymal stem cell-derived small extracellular vesicles as natural nanoparticles to attenuate cartilage injury via microRNA regulation.
    Chen P; Tang S; Gao H; Zhang H; Chen C; Fang Z; Peng G; Weng H; Chen A; Zhang C; Qiu Z; Li S; Chen J; Chen L; Chen X
    Int J Pharm; 2022 Jul; 623():121952. PubMed ID: 35753534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Robust and Highly Efficient Approach for Isolation of Mesenchymal Stem Cells From Wharton's Jelly for Tissue Repair.
    Zheng S; Gao Y; Chen K; Liu Y; Xia N; Fang F
    Cell Transplant; 2022; 31():9636897221084354. PubMed ID: 35313748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular Vesicles Derived from Wharton's Jelly Mesenchymal Stem Cells Prevent and Resolve Programmed Cell Death Mediated by Perinatal Hypoxia-Ischemia in Neuronal Cells.
    Joerger-Messerli MS; Oppliger B; Spinelli M; Thomi G; di Salvo I; Schneider P; Schoeberlein A
    Cell Transplant; 2018 Jan; 27(1):168-180. PubMed ID: 29562785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplexed Molecular Imaging Strategy Integrated with RNA Sequencing in the Assessment of the Therapeutic Effect of Wharton's Jelly Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoporosis.
    Lu CH; Chen YA; Ke CC; Chiu SJ; Jeng FS; Chen CC; Hsieh YJ; Yang BH; Chang CW; Wang FS; Liu RS
    Int J Nanomedicine; 2021; 16():7813-7830. PubMed ID: 34880610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of mesenchymal stem cells derived from the umbilical cord or Wharton's jelly and their extracellular vesicles in the treatment of various diseases.
    Patel AA; Mohamed AH; Rizaev J; Mallick AK; Qasim MT; Abdulmonem WA; Jamal A; Hattiwale HM; Kamal MA; Ahmad F
    Tissue Cell; 2024 Aug; 89():102415. PubMed ID: 38851032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Derivation of Mesenchymal Stromal Cells from Ovine Umbilical Cord Wharton's Jelly.
    Carreras-Sánchez I; López-Fernández A; Rojas-Márquez R; Vélez R; Aguirre M; Vives J
    Curr Protoc; 2021 Jan; 1(1):e18. PubMed ID: 33484488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells.
    Shi Q; Gao J; Jiang Y; Sun B; Lu W; Su M; Xu Y; Yang X; Zhang Y
    Stem Cell Res Ther; 2017 Nov; 8(1):246. PubMed ID: 29096715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wharton's Jelly Mesenchymal Stromal Cells Support the Expansion of Cord Blood-derived CD34
    Lo Iacono M; Russo E; Anzalone R; Baiamonte E; Alberti G; Gerbino A; Maggio A; La Rocca G; Acuto S
    Cell Transplant; 2018 Jan; 27(1):117-129. PubMed ID: 29562783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intranasally Administered Exosomes from Umbilical Cord Stem Cells Have Preventive Neuroprotective Effects and Contribute to Functional Recovery after Perinatal Brain Injury.
    Thomi G; Joerger-Messerli M; Haesler V; Muri L; Surbek D; Schoeberlein A
    Cells; 2019 Aug; 8(8):. PubMed ID: 31398924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wharton's Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model.
    Xie ZH; Liu Z; Zhang XR; Yang H; Wei LF; Wang Y; Xu SL; Sun L; Lai C; Bi JZ; Wang XY
    Clin Exp Med; 2016 Feb; 16(1):89-98. PubMed ID: 26188488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.
    Sabbaghziarani F; Mortezaee K; Akbari M; Kashani IR; Soleimani M; Moini A; Ataeinejad N; Zendedel A; Hassanzadeh G
    Metab Brain Dis; 2017 Feb; 32(1):185-193. PubMed ID: 27549229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Circular RNAs are abundantly expressed and upregulated during repair of the damaged endometrium by Wharton's jelly-derived mesenchymal stem cells.
    Sun B; Shi L; Shi Q; Jiang Y; Su Z; Yang X; Zhang Y
    Stem Cell Res Ther; 2018 Nov; 9(1):314. PubMed ID: 30442201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intranasal Delivery of Umbilical Cord-Derived Mesenchymal Stem Cells Preserves Myelination in Perinatal Brain Damage.
    Oppliger B; Joerger-Messerli M; Mueller M; Reinhart U; Schneider P; Surbek DV; Schoeberlein A
    Stem Cells Dev; 2016 Aug; 25(16):1234-42. PubMed ID: 27392671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preclinical Characterization and In Vivo Imaging of
    Lu CH; Chen YA; Ke CC; Chiu SJ; Chen CC; Hsieh YJ; Yang BH; Liu RS
    Mol Imaging Biol; 2021 Jun; 23(3):361-371. PubMed ID: 33216285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrathecal administration of the extracellular vesicles derived from human Wharton's jelly stem cells inhibit inflammation and attenuate the activity of inflammasome complexes after spinal cord injury in rats.
    Noori L; Arabzadeh S; Mohamadi Y; Mojaverrostami S; Mokhtari T; Akbari M; Hassanzadeh G
    Neurosci Res; 2021 Sep; 170():87-98. PubMed ID: 32717259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Immobilization of an FGF2-Derived Peptide on Culture Plates Improves the Production and Therapeutic Potential of Extracellular Vesicles from Wharton's Jelly Mesenchymal Stem Cells.
    Lee Y; Lim KM; Bong H; Lee SB; Jeon TI; Lee SY; Park HS; Kim JY; Song K; Kang GH; Kim SJ; Song M; Cho SG
    Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro.
    Corsello T; Amico G; Corrao S; Anzalone R; Timoneri F; Lo Iacono M; Russo E; Spatola GF; Uzzo ML; Giuffrè M; Caprnda M; Kubatka P; Kruzliak P; Conaldi PG; La Rocca G
    Stem Cell Rev Rep; 2019 Dec; 15(6):900-918. PubMed ID: 31741193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton's jelly mesenchymal stem cells (WJ-MSC).
    Prieto CP; Ortiz MC; Villanueva A; Villarroel C; Edwards SS; Elliott M; Lattus J; Aedo S; Meza D; Lois P; Palma V
    Stem Cell Res Ther; 2017 Feb; 8(1):43. PubMed ID: 28241866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton's Jelly and olfactory mucosa as sources of MSCs.
    Alizadeh R; Bagher Z; Kamrava SK; Falah M; Ghasemi Hamidabadi H; Eskandarian Boroujeni M; Mohammadi F; Khodaverdi S; Zare-Sadeghi A; Olya A; Komeili A
    J Chem Neuroanat; 2019 Mar; 96():126-133. PubMed ID: 30639339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Positive selection of Wharton's jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells.
    Amiri F; Halabian R; Dehgan Harati M; Bahadori M; Mehdipour A; Mohammadi Roushandeh A; Habibi Roudkenar M
    Hematology; 2015 May; 20(4):208-16. PubMed ID: 25116042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.