These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38534453)

  • 1. Personalized Driver Gene Prediction Using Graph Convolutional Networks with Conditional Random Fields.
    Wei PJ; Zhu AD; Cao R; Zheng C
    Biology (Basel); 2024 Mar; 13(3):. PubMed ID: 38534453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes.
    Zhang T; Zhang SW; Xie MY; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying cooperating cancer driver genes in individual patients through hypergraph random walk.
    Zhang T; Zhang SW; Xie MY; Li Y
    J Biomed Inform; 2024 Sep; 157():104710. PubMed ID: 39159864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CancerGATE: Prediction of cancer-driver genes using graph attention autoencoders.
    Jung S; Wang S; Lee D
    Comput Biol Med; 2024 Jun; 176():108568. PubMed ID: 38744009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating omics data and protein interaction networks to prioritize driver genes in cancer.
    Zhang T; Zhang D
    Oncotarget; 2017 Aug; 8(35):58050-58060. PubMed ID: 28938536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Graph Convolution Network-Based Model for Prioritizing Personalized Cancer Driver Genes of Individual Patients.
    Peng W; Yu P; Dai W; Fu X; Liu L; Pan Y
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):744-754. PubMed ID: 37195839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. deepDriver: Predicting Cancer Driver Genes Based on Somatic Mutations Using Deep Convolutional Neural Networks.
    Luo P; Ding Y; Lei X; Wu FX
    Front Genet; 2019; 10():13. PubMed ID: 30761181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving cancer driver gene identification using multi-task learning on graph convolutional network.
    Peng W; Tang Q; Dai W; Chen T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34643232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes.
    Sudhakar M; Rengaswamy R; Raman K
    Front Genet; 2022; 13():854190. PubMed ID: 35620468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network embedding framework for driver gene discovery by combining functional and structural information.
    Chu X; Guan B; Dai L; Liu JX; Li F; Shang J
    BMC Genomics; 2023 Jul; 24(1):426. PubMed ID: 37516822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation.
    Huang Y; Chen F; Sun H; Zhong C
    BMC Bioinformatics; 2024 Jan; 25(1):34. PubMed ID: 38254011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.
    Wei PJ; Zhang D; Xia J; Zheng CH
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.