These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38534549)

  • 1. Gait Recognition and Assistance Parameter Prediction Determination Based on Kinematic Information Measured by Inertial Measurement Units.
    Xiang Q; Wang J; Liu Y; Guo S; Liu L
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network.
    Su B; Gutierrez-Farewik EM
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.
    Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons.
    Wei B; Ding Z; Yi C; Guo H; Wang Z; Zhu J; Jiang F
    Front Neurorobot; 2021; 15():704226. PubMed ID: 34447302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Phase Recognition for Lower-Limb Exoskeleton with Only Joint Angular Sensors.
    Liu DX; Wu X; Du W; Wang C; Xu T
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Phase Detection in Walking and Stairs Using Machine Learning.
    Bauman VV; Brandon SCE
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Real-Time Stability Control Method Through sEMG Interface for Lower Extremity Rehabilitation Exoskeletons.
    Wang C; Guo Z; Duan S; He B; Yuan Y; Wu X
    Front Neurosci; 2021; 15():645374. PubMed ID: 33927589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SE-DenseNet-LSTM model for locomotion mode recognition in lower limb exoskeleton.
    Tang J; Zhao L; Wu M; Jiang Z; Cao J; Bao X
    PeerJ Comput Sci; 2024; 10():e1881. PubMed ID: 38435551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.
    Bian Q; Castellani M; Shepherd D; Duan J; Ding Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fusion Network with Stacked Denoise Autoencoder and Meta Learning for Lateral Walking Gait Phase Recognition and Multi-Step-Ahead Prediction.
    Cao W; Li C; Yang L; Yin M; Chen C; Kobsiriphat W; Utakapan T; Yang Y; Yu H; Wu X
    IEEE J Biomed Health Inform; 2024 Mar; PP():. PubMed ID: 38512746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Phase Classification and Assist Torque Prediction for a Lower Limb Exoskeleton System Using Kernel Recursive Least-Squares Method.
    Ma Y; Wu X; Wang C; Yi Z; Liang G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Actuator-Based Lower-Limb Soft Exoskeleton for Preswing Gait Assistance.
    Hsieh MH; Huang YH; Chao CL; Liu CH; Hsu WL; Shih WP
    Appl Bionics Biomech; 2020; 2020():5927657. PubMed ID: 32765645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Load Style Variation on Gait Recognition Based on sEMG Images Using a Convolutional Neural Network.
    Zhang X; Hu Y; Luo R; Li C; Tang Z
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.