These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38534549)
21. Novel Design and Implementation of a Neuromuscular Controller on a Hip Exoskeleton for Partial Gait Assistance. Messara S; Manzoori AR; Di Russo A; Ijspeert A; Bouri M IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941265 [TBL] [Abstract][Full Text] [Related]
22. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance. Fang S; Kinney AL; Reissman ME; Reissman T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680 [TBL] [Abstract][Full Text] [Related]
23. Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits. Murray S; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1912-5. PubMed ID: 23366288 [TBL] [Abstract][Full Text] [Related]
24. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller. Narayan J; Abbas M; Dwivedy SK Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333 [TBL] [Abstract][Full Text] [Related]
25. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer. Chen Z; Guo Q; Li T; Yan Y; Jiang D IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939 [TBL] [Abstract][Full Text] [Related]
26. Deep Learning-Assisted Gait Parameter Assessment for Neurodegenerative Diseases: Model Development and Validation. Jing Y; Qin P; Fan X; Qiang W; Wencheng Z; Sun W; Tian F; Wang D J Med Internet Res; 2023 Jul; 25():e46427. PubMed ID: 37405831 [TBL] [Abstract][Full Text] [Related]
27. Human Body Mixed Motion Pattern Recognition Method Based on Multi-Source Feature Parameter Fusion. Song J; Zhu A; Tu Y; Wang Y; Arif MA; Shen H; Shen Z; Zhang X; Cao G Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963751 [TBL] [Abstract][Full Text] [Related]
28. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
30. Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion. Li X; Liu J; Huang Y; Wang D; Miao Y Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014127 [TBL] [Abstract][Full Text] [Related]
31. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power. Galle S; Malcolm P; Collins SH; De Clercq D J Neuroeng Rehabil; 2017 Apr; 14(1):35. PubMed ID: 28449684 [TBL] [Abstract][Full Text] [Related]
32. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients. Lora-Millan JS; Sanchez-Cuesta FJ; Romero JP; Moreno JC; Rocon E J Neuroeng Rehabil; 2022 Oct; 19(1):109. PubMed ID: 36209096 [TBL] [Abstract][Full Text] [Related]
33. Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain. Medrano RL; Thomas GC; Keais CG; Rouse EJ; Gregg RD IEEE Trans Robot; 2023 Jun; 39(3):2170-2182. PubMed ID: 37304231 [TBL] [Abstract][Full Text] [Related]
34. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking. Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R Front Neurorobot; 2019; 13():57. PubMed ID: 31396072 [TBL] [Abstract][Full Text] [Related]
35. Effects of stance control Sánchez-Manchola M; Arciniegas-Mayag L; Múnera M; Bourgain M; Provot T; Cifuentes CA Front Bioeng Biotechnol; 2023; 11():1021525. PubMed ID: 37101752 [No Abstract] [Full Text] [Related]
36. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons. Moreira L; Figueiredo J; Cerqueira J; Santos CP Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204 [TBL] [Abstract][Full Text] [Related]
37. Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject's Gait Progression Using Wearable Inertial Sensor. Jeon H; Lee D Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400434 [TBL] [Abstract][Full Text] [Related]
38. Finite Class Bayesian Inference System for Circle and Linear Walking Gait Event Recognition Using Inertial Measurement Units. Sheng W; Zha F; Guo W; Qiu S; Sun L; Jia W IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2869-2879. PubMed ID: 33085609 [TBL] [Abstract][Full Text] [Related]
39. A gait phase prediction model trained on benchmark datasets for evaluating a controller for prosthetic legs. Kim M; Hargrove LJ Front Neurorobot; 2022; 16():1064313. PubMed ID: 36687207 [TBL] [Abstract][Full Text] [Related]
40. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton. Mazumder O; Kundu AS; Lenka PK; Bhaumik S Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]