These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38534562)

  • 1. The Lower Limb Muscle Co-Activation Map during Human Locomotion: From Slow Walking to Running.
    Fiori L; Castiglia SF; Chini G; Draicchio F; Sacco F; Serrao M; Tatarelli A; Varrecchia T; Ranavolo A
    Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of Global Lower Limb Muscle Coactivation During Walking in Cerebellar Ataxias.
    Fiori L; Ranavolo A; Varrecchia T; Tatarelli A; Conte C; Draicchio F; Castiglia SF; Coppola G; Casali C; Pierelli F; Serrao M
    Cerebellum; 2020 Aug; 19(4):583-596. PubMed ID: 32410093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global lower limb muscle coactivation during walking at different speeds: Relationship between spatio-temporal, kinematic, kinetic, and energetic parameters.
    Varrecchia T; Rinaldi M; Serrao M; Draicchio F; Conte C; Conforto S; Schmid M; Ranavolo A
    J Electromyogr Kinesiol; 2018 Dec; 43():148-157. PubMed ID: 30292137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking beyond preferred transition speed increases muscle activations with a shift from inverted pendulum to spring mass model in lower extremity.
    Shih Y; Chen YC; Lee YS; Chan MS; Shiang TY
    Gait Posture; 2016 May; 46():5-10. PubMed ID: 27131169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diurnal variation in gait characteristics and transition speed.
    Bessot N; Lericollais R; Gauthier A; Sesboüé B; Bulla J; Moussay S
    Chronobiol Int; 2015 Feb; 32(1):136-42. PubMed ID: 25229209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neither total muscle activation nor co-activation explains the youthful walking economy of older runners.
    Beck ON; Grabowski AM; Ortega JD
    Gait Posture; 2018 Sep; 65():163-168. PubMed ID: 30558925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.
    Rinaldi M; Ranavolo A; Conforto S; Martino G; Draicchio F; Conte C; Varrecchia T; Bini F; Casali C; Pierelli F; Serrao M
    Clin Biomech (Bristol, Avon); 2017 Oct; 48():63-72. PubMed ID: 28779695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners.
    Jiang X; Chen H; Sun D; Baker JS; Gu Y
    Acta Bioeng Biomech; 2021; 23(1):69-81. PubMed ID: 34846043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds.
    Arnold EM; Hamner SR; Seth A; Millard M; Delp SL
    J Exp Biol; 2013 Jun; 216(Pt 11):2150-60. PubMed ID: 23470656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural network model for the generation of muscle activation patterns for human locomotion.
    Prentice SD; Patla AE; Stacey DA
    J Electromyogr Kinesiol; 2001 Feb; 11(1):19-30. PubMed ID: 11166605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An exploration of muscle co-activation during different walking speeds and the association with lower limb joint stiffness.
    Akl AR; Conceição F; Richards J
    J Biomech; 2023 Aug; 157():111715. PubMed ID: 37423119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.
    Prilutsky BI; Gregor RJ
    J Exp Biol; 2001 Jul; 204(Pt 13):2277-87. PubMed ID: 11507111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Level of Agreement between the MotionMetrix System and an Optoelectronic Motion Capture System for Walking and Running Gait Measurements.
    Jaén-Carrillo D; García-Pinillos F; Chicano-Gutiérrez JM; Pérez-Castilla A; Soto-Hermoso V; Molina-Molina A; Ruiz-Alias SA
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion.
    Apps C; Sterzing T; O'Brien T; Lake M
    J Electromyogr Kinesiol; 2016 Dec; 31():55-62. PubMed ID: 27684529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanics and energetics of human walking and running: a joint level perspective.
    Farris DJ; Sawicki GS
    J R Soc Interface; 2012 Jan; 9(66):110-8. PubMed ID: 21613286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.