These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38534562)

  • 21. The mechanics and energetics of human walking and running: a joint level perspective.
    Farris DJ; Sawicki GS
    J R Soc Interface; 2012 Jan; 9(66):110-8. PubMed ID: 21613286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of the center of mass trajectory in human walking and running.
    Lee CR; Farley CT
    J Exp Biol; 1998 Nov; 201(Pt 21):2935-44. PubMed ID: 9866878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness.
    Addison BJ; Lieberman DE
    J Biomech; 2015 May; 48(7):1318-24. PubMed ID: 25814181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of muscle synergies associated with gait transition in humans.
    Hagio S; Fukuda M; Kouzaki M
    Front Hum Neurosci; 2015; 9():48. PubMed ID: 25713525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are Modular Activations Altered in Lower Limb Muscles of Persons with Multiple Sclerosis during Walking? Evidence from Muscle Synergies and Biomechanical Analysis.
    Lencioni T; Jonsdottir J; Cattaneo D; Crippa A; Gervasoni E; Rovaris M; Bizzi E; Ferrarin M
    Front Hum Neurosci; 2016; 10():620. PubMed ID: 28018193
    [No Abstract]   [Full Text] [Related]  

  • 26. Parametric equations to study and predict lower-limb joint kinematics and kinetics during human walking and slow running on slopes.
    Shkedy Rabani A; Mizrachi S; Sawicki GS; Riemer R
    PLoS One; 2022; 17(8):e0269061. PubMed ID: 35925954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor patterns in human walking and running.
    Cappellini G; Ivanenko YP; Poppele RE; Lacquaniti F
    J Neurophysiol; 2006 Jun; 95(6):3426-37. PubMed ID: 16554517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.
    Verheul J; Clansey AC; Lake MJ
    J Appl Physiol (1985); 2017 Mar; 122(3):653-665. PubMed ID: 27932678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE; Ardigò LP; Saibene F
    Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds.
    Nilsson J; Thorstensson A
    Acta Physiol Scand; 1987 Jan; 129(1):107-14. PubMed ID: 3565038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running.
    Nüesch C; Overberg JA; Schwameder H; Pagenstert G; Mündermann A
    Gait Posture; 2018 May; 62():117-123. PubMed ID: 29547791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinematic, Cardiopulmonary, and Metabolic Responses of Overweight Runners While Running at Self-Selected and Standardized Speeds.
    Zdziarski LA; Chen C; Horodyski M; Vincent KR; Vincent HK
    PM R; 2016 Feb; 8(2):152-60. PubMed ID: 26146194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lower leg muscle force prediction in gait transition.
    Taira C; Kawada M; Kiyama R; Forner-Cordero A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4867-4870. PubMed ID: 34892299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions.
    Ivanenko YP; Cappellini G; Poppele RE; Lacquaniti F
    Eur J Neurosci; 2008 Jun; 27(12):3351-68. PubMed ID: 18598271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The assessment of muscle mechanical properties in multi-joint movements reveals inverse correlation of leg muscle force and power with gait transition speed.
    Dobrijevic S; Ranisavljev I; Djuric S; Ilic V
    Gait Posture; 2020 Mar; 77():59-63. PubMed ID: 31991280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal, kinematic, force and muscle activation outcomes during gait and functional exercise in water compared to on land: A systematic review.
    Heywood S; McClelland J; Geigle P; Rahmann A; Clark R
    Gait Posture; 2016 Jul; 48():120-130. PubMed ID: 27236637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds.
    Jin L; Hahn ME
    Hum Mov Sci; 2018 Apr; 58():1-9. PubMed ID: 29331489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.