BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 38534628)

  • 1. Improving Pore Characteristics, Mechanical Properties and Thermal Performances of Near-Net Shape Manufacturing Phenolic Resin Aerogels.
    Sha R; Dai J; Wang B; Sha J
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceramic Fiber-Reinforced Polyimide Aerogel Composites with Improved Shape Stability against Shrinkage.
    Shi W; Wan M; Tang Y; Chen W
    Gels; 2024 May; 10(5):. PubMed ID: 38786244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Modification of Polyimide Aerogel by Thermoplastic Polyurethane for Enhanced Mechanical Strength and Thermal Insulation Performance.
    Zhao X; Su M; Yu S; Zhang J; Liu X; Qiu K; Yi X; Zhang J; Dou G; Wang M
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29282-29290. PubMed ID: 38780962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Double-Phase-Networking Polyimide Hybrid Aerogel with Exceptional Dimensional Stability for Superior Thermal Protection System.
    Liu C; Wang M; Wang J; Xu G; Zhang S; Ding F
    Small; 2024 Jul; ():e2404104. PubMed ID: 38953403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Mesopore Volume and Thermal Insulation of Silica Aerogel via Ambient Pressure Drying-Assisted Foaming Method.
    Guo J; Luo K; Zou W; Xu J; Guo B
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic solvents-free and ambient-pressure drying melamine formaldehyde resin aerogels with homogeneous structures, outstanding mechanical strength and flame retardancy.
    Wang T; Xu J; Zhan YJ; He L; Fu ZC; Deng JN; An WL; Zhao HB; Chen MJ
    Int J Biol Macromol; 2024 May; 273(Pt 2):132811. PubMed ID: 38825282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic Highly Flexible Triple-Network Polyorganosiloxane-Based Aerogels for Thermal Insulation, Oil-Water Separation, and Strain/Pressure Sensing.
    Wang Y; Xi S; Zhou B; Zu G; Liang X; Zhang X; Shen J; Wang X
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30324-30335. PubMed ID: 38805013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of the SiC/HfC Composite Aerogel with Ultra-Low Thermal Conductivity and Excellent Compressive Strength.
    Wang W; You Q; Wu Z; Cui S; Shen W
    Gels; 2024 Apr; 10(5):. PubMed ID: 38786208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of chitosan/alginate aerogels with three-dimensional hierarchical pore network structure via hydrogen bonding dissolution and covalent crosslinking synergistic strategy for thermal management systems.
    Yang Q; Feng S; Guo J; Guan F; Zhang S; Sun J; Zhang Y; Xu Y; Zhang X; Bao D; He J
    Int J Biol Macromol; 2024 Jun; ():133367. PubMed ID: 38945720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Transparent Layered Tough Aerogels for Thermal Superinsulation and Triboelectric Nanogenerator.
    Hu Z; Zhang X; Sun Q; Gu P; Liang X; Yang X; Liu M; Huang J; Wu G; Zu G
    Small; 2024 Jun; 20(24):e2307602. PubMed ID: 38150669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Woven Agarose-Cellulose Composite Aerogel Fibers with Outstanding Radial Elasticity for Personal Thermal Management.
    Yang X; Du Y; Jiang P; Fu R; Liu L; Miao C; Xie R; Liu Y; Wang Y; Sai H
    ACS Appl Mater Interfaces; 2024 May; 16(20):26757-26767. PubMed ID: 38722961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of drying routes on the properties of anisotropic all-cellulose composite foams from post-consumer cotton clothing.
    Schiele C; Ruiz-Caldas MX; Wu T; Nocerino E; Åhl A; Mathew AP; Nyström G; Bergström L; Apostolopoulou-Kalkavoura V
    Nanoscale; 2024 Jul; ():. PubMed ID: 38952181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent Cavitation during Ambient Pressure Drying of Silica Aerogels.
    Gonthier J; Scoppola E; Rilling T; Gurlo A; Fratzl P; Wagermaier W
    Langmuir; 2024 Jun; 40(25):12925-12938. PubMed ID: 38865157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength.
    Zhang S; Lu K; Hu Y; Xu G; Wang J; Liao Y; Yu S
    Gels; 2024 Mar; 10(3):. PubMed ID: 38534628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing Cellulose Diacetate Aerogels with Pearl-Necklace-like Skeleton Networking Structure.
    Xiong S; Hu Y; Zhang S; Xiao Y; Li Z
    Gels; 2021 Nov; 7(4):. PubMed ID: 34842720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambient Pressure Drying to Construct Cellulose Acetate/Benzoxazine Hybrid Aerogels with Flame Retardancy, Excellent Thermal Stability, and Superior Mechanical Strength Resistance to Cryogenic Temperature.
    Zhang S; Wang Z; Hu Y; Ji H; Xiao Y; Wang J; Xu G; Ding F
    Biomacromolecules; 2022 Dec; 23(12):5056-5064. PubMed ID: 36331293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolithic carbon aerogels within foam framework for high-temperature thermal insulation and organics absorption.
    Wu K; Cao J; Qian Z; Luo Y; Niu B; Zhang Y; Long D
    J Colloid Interface Sci; 2022 Jul; 618():259-269. PubMed ID: 35339962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review.
    Zhang X; Yu J; Zhao C; Si Y
    Small; 2024 Mar; ():e2311464. PubMed ID: 38511588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose Aerogels: Synthesis, Applications, and Prospects.
    Long LY; Weng YX; Wang YZ
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966656
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.