These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38534650)

  • 1. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against
    Parada J; Tortella G; Seabra AB; Fincheira P; Rubilar O
    Antibiotics (Basel); 2024 Feb; 13(3):. PubMed ID: 38534650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of Different Classes of Fungicides on
    Kim JO; Shin JH; Gumilang A; Chung K; Choi KY; Kim KS
    Plant Pathol J; 2016 Dec; 32(6):570-574. PubMed ID: 27904464
    [No Abstract]   [Full Text] [Related]  

  • 4. Synergistic effects of some essential oils against fungal spoilage on pear fruit.
    Nikkhah M; Hashemi M; Habibi Najafi MB; Farhoosh R
    Int J Food Microbiol; 2017 Sep; 257():285-294. PubMed ID: 28763743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green Synthesis of Potential Antifungal Agents: 2-Benzyl Substituted Thiobenzoazoles.
    Ballari MS; Herrera Cano N; Lopez AG; Wunderlin DA; Feresín GE; Santiago AN
    J Agric Food Chem; 2017 Nov; 65(47):10325-10331. PubMed ID: 29099589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea.
    Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S
    Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy between Cu-NPs and fungicides against Botrytis cinerea.
    Malandrakis AA; Kavroulakis N; Chrysikopoulos CV
    Sci Total Environ; 2020 Feb; 703():135557. PubMed ID: 31767318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry.
    Trzcińska-Wencel J; Wypij M; Rai M; Golińska P
    Front Microbiol; 2023; 14():1125685. PubMed ID: 36891391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal Exploration of Quinoline Derivatives against Phytopathogenic Fungi Inspired by Quinine Alkaloids.
    Chen YJ; Ma KY; Du SS; Zhang ZJ; Wu TL; Sun Y; Liu YQ; Yin XD; Zhou R; Yan YF; Wang RX; He YH; Chu QR; Tang C
    J Agric Food Chem; 2021 Oct; 69(41):12156-12170. PubMed ID: 34623798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Simplification of Cryptolepine to Obtain Novel Antifungal Quinoline Derivatives against Phytopathogenic Fungi.
    Li HX; Luo XF; Deng P; Zhang SY; Zhou H; Ding YY; Wang YR; Liu YQ; Zhang ZJ
    J Agric Food Chem; 2023 Feb; 71(5):2301-2312. PubMed ID: 36706432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal activity of P3HB microparticles containing tebuconazole.
    Shershneva AM; Murueva AV; Zhila NO; Volova TG
    J Environ Sci Health B; 2019; 54(3):196-204. PubMed ID: 30638127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1-Phenyl-3-toluyl-4-[ortho-1'-(N-ethyl-2'-methylpropylamine)]phenylpyrazole, synthesis and evaluation of the in vitro antifungal activity against Botrytis cinerea and Fusarium oxysporum.
    Dardari Z; Boudouma M; Sebban A; Bahloul A; Kitane S; Berrada M
    Farmaco; 2004 Sep; 59(9):673-8. PubMed ID: 15337431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, Synthesis, and Antifungal Evaluation of Luotonin A Derivatives against Phytopathogenic Fungi.
    Wang RX; Du SS; Wang JR; Chu QR; Tang C; Zhang ZJ; Yang CJ; He YH; Li HX; Wu TL; Liu YQ
    J Agric Food Chem; 2021 Dec; 69(48):14467-14477. PubMed ID: 34843231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary Mode of Action of the Novel Sulfonamide Fungicide against
    Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection.
    Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S
    Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of
    Saito S; Wang F; Xiao CL
    Plant Dis; 2020 Mar; 104(3):787-792. PubMed ID: 31940447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pine Rosin as a Valuable Natural Resource in the Synthesis of Fungicide Candidates for Controlling
    Mao S; Wu C; Gao Y; Hao J; He X; Tao P; Li J; Shang S; Song Z; Song J
    J Agric Food Chem; 2021 Jun; 69(23):6475-6484. PubMed ID: 34075747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea.
    Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V
    Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.