These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38534849)

  • 41. Dipo: a miniaturized hopping robot via lightweight and compact actuator design for power amplification.
    Kim C; Lee DJ; Jung SP; Jung GP
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37141894
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Muscle-inspired soft robots based on bilateral dielectric elastomer actuators.
    Yang Y; Li D; Sun Y; Wu M; Su J; Li Y; Yu X; Li L; Yu J
    Microsyst Nanoeng; 2023; 9():124. PubMed ID: 37814608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Origami-based earthworm-like locomotion robots.
    Fang H; Zhang Y; Wang KW
    Bioinspir Biomim; 2017 Oct; 12(6):065003. PubMed ID: 28777743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. V-Shape Pneumatic Torsional Actuator: A Building Block for Soft Grasper and Manipulator.
    Ye X; Zhu S; Qian X; Zhang M; Wang X
    Soft Robot; 2022 Jun; 9(3):562-576. PubMed ID: 34166097
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interfacing Soft and Hard: A Spring Reinforced Actuator.
    Fu HC; Ho JDL; Lee KH; Hu YC; Au SKW; Cho KJ; Sze KY; Kwok KW
    Soft Robot; 2020 Feb; 7(1):44-58. PubMed ID: 31613702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field.
    Xu R; Xu Q
    Biomimetics (Basel); 2023 Jun; 8(3):. PubMed ID: 37504157
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent Developments of Actuation Mechanisms for Continuum Robots: A Review.
    Seleem IA; El-Hussieny H; Ishii H
    Int J Control Autom Syst; 2023; 21(5):1592-1609. PubMed ID: 37151813
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Cut-and-Fold Self-Sustained Compliant Oscillator for Autonomous Actuation of Origami-Inspired Robots.
    Yan W; Mehta A
    Soft Robot; 2022 Oct; 9(5):871-881. PubMed ID: 34813378
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.
    Nemitz MP; Mihaylov P; Barraclough TW; Ross D; Stokes AA
    Soft Robot; 2016 Dec; 3(4):198-204. PubMed ID: 28078195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinspired Amphibious Origami Robot with Body Sensing for Multimodal Locomotion.
    Dong H; Yang H; Ding S; Li T; Yu H
    Soft Robot; 2022 Dec; 9(6):1198-1209. PubMed ID: 35671518
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Yoshimura-origami Based Earthworm-like Robot With 3-dimensional Locomotion Capability.
    Zhang Q; Fang H; Xu J
    Front Robot AI; 2021; 8():738214. PubMed ID: 34490358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enabling robustness to failure with modular field robots.
    Cordie T; Roberts J; Dunbabin M; Dungavell R; Bandyopadhyay T
    Front Robot AI; 2024; 11():1225297. PubMed ID: 38544744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.
    Chapman EM; Jenkins TE; Bryant M
    Bioinspir Biomim; 2017 Nov; 12(6):066010. PubMed ID: 28691919
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
    Lee DV; Harris SL
    Front Robot AI; 2018; 5():111. PubMed ID: 33500990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Self-Sensing Pneumatic Compressing Actuator.
    Lin N; Zheng H; Li Y; Wang R; Chen X; Zhang X
    Front Neurorobot; 2020; 14():572856. PubMed ID: 33362501
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Actuation and design innovations in earthworm-inspired soft robots: A review.
    Liu J; Li P; Zuo S
    Front Bioeng Biotechnol; 2023; 11():1088105. PubMed ID: 36896011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A pneumatic random-access memory for controlling soft robots.
    Hoang S; Karydis K; Brisk P; Grover WH
    PLoS One; 2021; 16(7):e0254524. PubMed ID: 34270580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication.
    Zou J; Feng M; Ding N; Yan P; Xu H; Yang D; Fang NX; Gu G; Zhu X
    Natl Sci Rev; 2021 Oct; 8(10):nwab048. PubMed ID: 34858608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves.
    Kandhari A; Wang Y; Chiel HJ; Daltorio KA
    Soft Robot; 2019 Aug; 6(4):560-577. PubMed ID: 31066633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.