BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 38535206)

  • 1. Comparison of CRISPR-MAD7 and CRISPR-Cas9 for Gene Disruptions in
    Smirnov K; Weiss F; Hatzl AM; Rieder L; Olesen K; Jensen S; Glieder A
    J Fungi (Basel); 2024 Mar; 10(3):. PubMed ID: 38535206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing in plants with MAD7 nuclease.
    Lin Q; Zhu Z; Liu G; Sun C; Lin D; Xue C; Li S; Zhang D; Gao C; Wang Y; Qiu JL
    J Genet Genomics; 2021 Jun; 48(6):444-451. PubMed ID: 34120856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7.
    Price MA; Cruz R; Bryson J; Escalettes F; Rosser SJ
    Biotechnol Bioeng; 2020 Jun; 117(6):1805-1816. PubMed ID: 32077487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing.
    Rojek JB; Basavaraju Y; Nallapareddy S; Bulté DB; Baumgartner R; Schoffelen S; Grav LM; Goletz S; Pedersen LE
    Biotechnol Bioeng; 2023 Jun; 120(6):1478-1491. PubMed ID: 36864663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted editing of transcriptional activator MXR1 on the Pichia pastoris genome using CRISPR/Cas9 technology.
    Hou C; Yang Y; Xing Y; Zhan C; Liu G; Liu X; Liu C; Zhan J; Xu D; Bai Z
    Yeast; 2020 Apr; 37(4):305-312. PubMed ID: 32050051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ErCas12a CRISPR-MAD7 for Model Generation in Human Cells, Mice, and Rats.
    Liu Z; Schiel JA; Maksimova E; Strezoska Ž; Zhao G; Anderson EM; Wu Y; Warren J; Bartels A; van Brabant Smith A; Lowe CE; Forbes KP
    CRISPR J; 2020 Apr; 3(2):97-108. PubMed ID: 32315227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 Tool Kit for Efficient and Targeted Insertion/Deletion Mutagenesis of the Komagataella phaffii (Pichia pastoris) Genome.
    Fischer JE; Glieder A
    Methods Mol Biol; 2022; 2513():121-133. PubMed ID: 35781203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Split-Marker System for CRISPR-Cas9 Genome Editing in Methylotrophic Yeasts.
    Karginov AV; Tarutina MG; Lapteva AR; Pakhomova MD; Galliamov AA; Filkin SY; Fedorov AN; Agaphonov MO
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of synthetic biology tools to engineer
    Gao J; Jiang L; Lian J
    Synth Syst Biotechnol; 2021 Jun; 6(2):110-119. PubMed ID: 33997361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris.
    Liu Q; Shi X; Song L; Liu H; Zhou X; Wang Q; Zhang Y; Cai M
    Microb Cell Fact; 2019 Aug; 18(1):144. PubMed ID: 31434578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous Single-Strand DNA-Annealing and Binding Protein Enhance CRISPR-Based Genome Editing Efficiency in
    Deng M; Wu Y; Lv X; Liu L; Li J; Du G; Chen J; Liu Y
    ACS Synth Biol; 2023 Nov; 12(11):3443-3453. PubMed ID: 37881961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9-Mediated Genome Editing of the Komagataella phaffii to Obtain a Phytase-Producer Markerless Strain.
    Tkachenko AA; Borshchevskaya LN; Sineoky SP; Gordeeva TL
    Biochemistry (Mosc); 2023 Sep; 88(9):1338-1346. PubMed ID: 37770400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers.
    Weninger A; Fischer JE; Raschmanová H; Kniely C; Vogl T; Glieder A
    J Cell Biochem; 2018 Apr; 119(4):3183-3198. PubMed ID: 29091307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CRISPR-Cas12a Platform for Accurate Genome Editing, Gene Disruption, and Efficient Transgene Integration in Human Immune Cells.
    Mohr M; Damas N; Gudmand-Høyer J; Zeeberg K; Jedrzejczyk D; Vlassis A; Morera-Gómez M; Pereira-Schoning S; Puš U; Oliver-Almirall A; Lyholm Jensen T; Baumgartner R; Tate Weinert B; Gill RT; Warnecke T
    ACS Synth Biol; 2023 Feb; 12(2):375-389. PubMed ID: 36750230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
    Khatodia S; Bhatotia K; Tuteja N
    Bioengineered; 2017 May; 8(3):274-279. PubMed ID: 28581909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.
    Schwartz C; Wheeldon I
    Methods Mol Biol; 2018; 1772():327-345. PubMed ID: 29754237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.