These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38535651)

  • 1. Energy Storage Performance of Electrode Materials Derived from Manganese Metal-Organic Frameworks.
    Ryoo G; Kim SK; Lee DK; Kim YJ; Han YS; Jung KH
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melamine-based metal-organic frameworks for high-performance supercapacitor applications.
    Vanaraj R; Daniel S; Mayakrishnan G; Govindarasu Gunasekaran K; Arumugam B; Babu CM; Kim SC
    J Colloid Interface Sci; 2024 Jul; 666():380-392. PubMed ID: 38603880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electrochemical performance of Ce-MOF/h-CeO
    Baweja R; Verma M; Gautam S; Upreti S; Goyal N
    RSC Adv; 2024 May; 14(25):17855-17865. PubMed ID: 38832244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste polyethylene terephthalate plastic derived Zr-MOF for high performance supercapacitor applications.
    M Al-Enizi A; Nafady A; Alanazi NB; Abdulhameed MM; Shaikh SF
    Chemosphere; 2024 Feb; 350():141080. PubMed ID: 38163467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Electrochemical Analysis of Ni-Based Metal Organic Frameworks Containing Binary Ligands for Capacitor Electrodes.
    Oh HJ; Jung Y; Kim S
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4670-4674. PubMed ID: 33691849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercapacitor with high cycling stability through electrochemical deposition of metal-organic frameworks/polypyrrole positive electrode.
    Liu Y; Xu N; Chen W; Wang X; Sun C; Su Z
    Dalton Trans; 2018 Oct; 47(38):13472-13478. PubMed ID: 30187075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Mn-Based MOFs and Their Derivatives for High-Performance Supercapacitor.
    Cheng H; Li J; Meng T; Shu D
    Small; 2024 May; 20(20):e2308804. PubMed ID: 38073335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode.
    El Nady J; Shokry A; Khalil M; Ebrahim S; Elshaer AM; Anas M
    Sci Rep; 2022 Mar; 12(1):3611. PubMed ID: 35246573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-Controlled Growth of Different Morphological Bimetallic Metal-Organic Frameworks for Enhanced Charge-Storage Performance and Quasi-Solid-State Hybrid Supercapacitors.
    Sahoo G; Jeong HS; Jeong SM
    ACS Appl Mater Interfaces; 2023 May; 15(17):21097-21111. PubMed ID: 37075253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Optimization of Ni-Based Nano Metal-Organic Frameworks as a Superior Electrode Material for Supercapacitor.
    Manquian C; Navarrete A; Vivas L; Troncoso L; Singh DP
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability.
    Kazemi SH; Hosseinzadeh B; Kazemi H; Kiani MA; Hajati S
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23063-23073. PubMed ID: 29882650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Synthesis and Electrochemical Studies of Mn
    Mustafa G; Mehboob G; Khisro SN; Javed M; Chen X; Ahmed MS; Ashfaq JM; Asghar G; Hussain S; Rashid AU; Mehboob G
    Front Chem; 2021; 9():717074. PubMed ID: 34513796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt sulfide flower-like derived from metal organic frameworks on nickel foam as an electrode for fabrication of asymmetric supercapacitors.
    Nasiri F; Fotouhi L; Shahrokhian S; Zirak M
    Sci Rep; 2024 Mar; 14(1):6045. PubMed ID: 38472427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Supercapacitors Based on Hierarchically Nanoporous Carbon and ZnCo
    He D; Gao Y; Yao Y; Wu L; Zhang J; Huang ZH; Wang MX
    Front Chem; 2020; 8():719. PubMed ID: 33173759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOP-18-Derived CuO Fiber for Hybrid Supercapacitor Electrodes.
    Haque SFB; Balkus KJ; Ferraris JP
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiochemical characterization of metal organic framework materials: A mini review.
    Abid HR; Azhar MR; Iglauer S; Rada ZH; Al-Yaseri A; Keshavarz A
    Heliyon; 2024 Jan; 10(1):e23840. PubMed ID: 38192763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of cobalt-based MOFs for super-capacitor electrode materials of new energy vehicle.
    Jin X; Jiang Z; Feng Y; Fang X
    Heliyon; 2024 May; 10(10):e31222. PubMed ID: 38803895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Co
    Imaduddin IS; Majid SR; Aziz SB; Brevik I; Yusuf SNF; Brza MA; Saeed SR; Kadir MFZA
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33530457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.