BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 38535676)

  • 1. Resistive Switching Devices for Neuromorphic Computing: From Foundations to Chip Level Innovations.
    Udaya Mohanan K
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing.
    Zahoor F; Hussin FA; Isyaku UB; Gupta S; Khanday FA; Chattopadhyay A; Abbas H
    Discov Nano; 2023 Mar; 18(1):36. PubMed ID: 37382679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of Electrochemically Synthesized Resistive Switching Devices: Memory Storage, Neuromorphic Computing, and Sensing Applications.
    Kundale SS; Kamble GU; Patil PP; Patil SL; Rokade KA; Khot AC; Nirmal KA; Kamat RK; Kim KH; An HM; Dongale TD; Kim TG
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filament-Free Bulk Resistive Memory Enables Deterministic Analogue Switching.
    Li Y; Fuller EJ; Sugar JD; Yoo S; Ashby DS; Bennett CH; Horton RD; Bartsch MS; Marinella MJ; Lu WD; Talin AA
    Adv Mater; 2020 Nov; 32(45):e2003984. PubMed ID: 32964602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications.
    Ielmini D; Milo V
    J Comput Electron; 2017; 16(4):1121-1143. PubMed ID: 31997981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications.
    Zahoor F; Azni Zulkifli TZ; Khanday FA
    Nanoscale Res Lett; 2020 Apr; 15(1):90. PubMed ID: 32323059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sign backpropagation: An on-chip learning algorithm for analog RRAM neuromorphic computing systems.
    Zhang Q; Wu H; Yao P; Zhang W; Gao B; Deng N; Qian H
    Neural Netw; 2018 Dec; 108():217-223. PubMed ID: 30216871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices.
    Zahari F; PĂ©rez E; Mahadevaiah MK; Kohlstedt H; Wenger C; Ziegler M
    Sci Rep; 2020 Sep; 10(1):14450. PubMed ID: 32879397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application.
    Shen Z; Zhao C; Qi Y; Xu W; Liu Y; Mitrovic IZ; Yang L; Zhao C
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32717952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications.
    Abbas H; Li J; Ang DS
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
    Guo Y; Wu H; Gao B; Qian H
    Front Neurosci; 2019; 13():812. PubMed ID: 31447634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Status and Prospects of ZnO-Based Resistive Switching Memory Devices.
    Simanjuntak FM; Panda D; Wei KH; Tseng TY
    Nanoscale Res Lett; 2016 Dec; 11(1):368. PubMed ID: 27541816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Level Resistive Switching in SnSe/SrTiO
    Ho TL; Ding K; Lyapunov N; Suen CH; Wong LW; Zhao J; Yang M; Zhou X; Dai JY
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive Non-Volatile Memory Based on Graphene Materials.
    Shen Z; Zhao C; Qi Y; Mitrovic IZ; Yang L; Wen J; Huang Y; Li P; Zhao C
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32218324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Level Resistive Al/Ga
    Wang LW; Huang CW; Lee KJ; Chu SY; Wang YH
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-Timing Dependent Plasticity in Unipolar Silicon Oxide RRAM Devices.
    Zarudnyi K; Mehonic A; Montesi L; Buckwell M; Hudziak S; Kenyon AJ
    Front Neurosci; 2018; 12():57. PubMed ID: 29472837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems.
    Song MK; Kang JH; Zhang X; Ji W; Ascoli A; Messaris I; Demirkol AS; Dong B; Aggarwal S; Wan W; Hong SM; Cardwell SG; Boybat I; Seo JS; Lee JS; Lanza M; Yeon H; Onen M; Li J; Yildiz B; Del Alamo JA; Kim S; Choi S; Milano G; Ricciardi C; Alff L; Chai Y; Wang Z; Bhaskaran H; Hersam MC; Strukov D; Wong HP; Valov I; Gao B; Wu H; Tetzlaff R; Sebastian A; Lu W; Chua L; Yang JJ; Kim J
    ACS Nano; 2023 Jul; 17(13):11994-12039. PubMed ID: 37382380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.