These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38536230)

  • 1. Spent Lithium-Ion Batteries Derived Co
    Zhao X; Kuang C; Liu H; An C; Wang M; Mu T
    ChemSusChem; 2024 Sep; 17(17):e202400105. PubMed ID: 38536230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of cobalt from spent LIBs to Co
    Ping T; Li C; Yezhe Y
    Environ Technol; 2024 Jul; ():1-14. PubMed ID: 39002154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO
    Qing J; Wu X; Zeng L; Guan W; Cao Z; Li Q; Wang M; Zhang G; Wu S
    J Environ Manage; 2024 Apr; 356():120729. PubMed ID: 38537464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient Recovery and Recycling of Cobalt from Spent Lithium-Ion Batteries Using an
    Suriyanarayanan S; Babu MP; Murugan R; Muthuraj D; Ramanujam K; Nicholls IA
    ACS Omega; 2023 Feb; 8(7):6959-6967. PubMed ID: 36844576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Gram-Scale Synthesis of Co
    Kim J; Kim HG; Kim HS; Dang Van C; Lee MH; Jeon KW
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing High-Performance Cobalt-Based Environmental Catalysts from Spent Lithium-Ion Batteries: Unveiling Overlooked Roles of Copper and Aluminum from Current Collectors.
    Liang J; Li K; Shi F; Li J; Gu JN; Xue Y; Bao C; Guo M; Jia J; Fan M; Sun T
    Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407870. PubMed ID: 38748475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-efficiency recycling of spent lithium-ion batteries: A double closed-loop process.
    Luo Y; Ou L; Yin C
    Sci Total Environ; 2023 Jun; 875():162567. PubMed ID: 36871725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries.
    Qu G; Wei Y; Liu C; Yao S; Zhou S; Li B
    Waste Manag; 2022 Aug; 150():66-74. PubMed ID: 35803158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovered spinel MnCo
    Natarajan S; Anantharaj S; Tayade RJ; Bajaj HC; Kundu S
    Dalton Trans; 2017 Oct; 46(41):14382-14392. PubMed ID: 29027560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionothermal synthesis of activated carbon from waste PET bottles as anode materials for lithium-ion batteries.
    Ehi-Eromosele CO; Onwucha CN; Ajayi SO; Melinte G; Hansen AL; Indris S; Ehrenberg H
    RSC Adv; 2022 Nov; 12(53):34670-34684. PubMed ID: 36545608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green and efficient recycling method for spent Ni-Co-Mn lithium batteries utilizing multifunctional deep eutectic solvents.
    Luo Y; Deng Y; Shi H; Yang H; Yin C; Ou L
    J Environ Manage; 2024 Feb; 351():119814. PubMed ID: 38103425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling the recovery of spent lithium-ion batteries and the treatment of phenol wastewater: A "treating waste with waste" strategy.
    Luo S; Zhu X; Gong M; Mo R; Yang S
    Chemosphere; 2023 Nov; 341():140018. PubMed ID: 37657706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive approach for the recycling of anode materials from spent lithium-ion batteries: Separation, lithium recovery, and graphite reutilization as environmental catalyst.
    Kong Y; Takaya Y; Córdova-Udaeta M; Tokoro C
    Waste Manag; 2024 Nov; 188():60-71. PubMed ID: 39116657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
    Roy JJ; Cao B; Madhavi S
    Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of precious metals from used lithium-ion batteries by a natural deep eutectic solvent with synergistic effects.
    Luo Y; Ou L; Yin C
    Waste Manag; 2023 Jun; 164():1-8. PubMed ID: 37023641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.