These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38536237)
1. Ion-Solvent Interactions under Confinement Hold the Key to Tuning the DNA Translocation Speeds in Polyelectrolyte-Functionalized Nanopores. Kumar A; Bakli C; Chakraborty S Langmuir; 2024 Apr; 40(14):7300-7309. PubMed ID: 38536237 [TBL] [Abstract][Full Text] [Related]
2. Significant alteration in DNA electrophoretic translocation velocity through soft nanopores by ion partitioning. Ganjizade A; Ashrafizadeh SN; Sadeghi A Anal Chim Acta; 2019 Nov; 1080():66-74. PubMed ID: 31409476 [TBL] [Abstract][Full Text] [Related]
3. DNA translocation through pH-dependent soft nanopores. Yousefi A; Ganjizade A; Ashrafizadeh SN Eur Biophys J; 2021 Sep; 50(6):905-914. PubMed ID: 34120216 [TBL] [Abstract][Full Text] [Related]
4. DNA translocation through polyelectrolyte-modified nanopores: An analytical approximation. Das PK Electrophoresis; 2018 Jun; 39(11):1370-1374. PubMed ID: 29542143 [TBL] [Abstract][Full Text] [Related]
5. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. Ali M; Yameen B; Cervera J; RamÃrez P; Neumann R; Ensinger W; Knoll W; Azzaroni O J Am Chem Soc; 2010 Jun; 132(24):8338-48. PubMed ID: 20518503 [TBL] [Abstract][Full Text] [Related]
6. Regulating DNA translocation through functionalized soft nanopores. Yeh LH; Zhang M; Qian S; Hsu JP Nanoscale; 2012 Apr; 4(8):2685-93. PubMed ID: 22422141 [TBL] [Abstract][Full Text] [Related]
7. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores. Ramachandran A; Guo Q; Iqbal SM; Liu Y J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788 [TBL] [Abstract][Full Text] [Related]
8. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822 [TBL] [Abstract][Full Text] [Related]
9. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter. Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034 [TBL] [Abstract][Full Text] [Related]
10. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore. Si W; Zhang Y; Sha J; Chen Y Nanoscale; 2018 Nov; 10(41):19450-19458. PubMed ID: 30311618 [TBL] [Abstract][Full Text] [Related]
11. Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores. Gu Z; He Z; Chen F; Meng L; Feng J; Zhou R ACS Appl Mater Interfaces; 2022 Jul; 14(28):32618-32624. PubMed ID: 35798544 [TBL] [Abstract][Full Text] [Related]
12. Insights into the Role of Counterions on Polyelectrolyte-Modified Nanopore Accessibility. Silies L; Gonzalez Solveyra E; Szleifer I; Andrieu-Brunsen A Langmuir; 2018 May; 34(20):5943-5953. PubMed ID: 29737850 [TBL] [Abstract][Full Text] [Related]
13. On nanopore DNA sequencing by signal and noise analysis of ionic current. Wen C; Zeng S; Zhang Z; Hjort K; Scheicher R; Zhang SL Nanotechnology; 2016 May; 27(21):215502. PubMed ID: 27095148 [TBL] [Abstract][Full Text] [Related]
14. Ionic Signal Amplification of DNA in a Nanopore. Tsutsui M; Yokota K; He Y; Kawai T Small Methods; 2022 Nov; 6(11):e2200761. PubMed ID: 36196624 [TBL] [Abstract][Full Text] [Related]
15. Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer. McMullen AJ; Tang JX; Stein D ACS Nano; 2017 Nov; 11(11):11669-11677. PubMed ID: 29091733 [TBL] [Abstract][Full Text] [Related]
16. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
17. Controlling DNA Fragments Translocation across Nanopores with the Synergic Use of Site-Directed Mutagenesis, pH-Dependent Charge Tuning, and Electroosmotic Flow. Mereuta L; Bhatti H; Asandei A; Cimpanu A; Ying YL; Long YT; Luchian T ACS Appl Mater Interfaces; 2024 Jul; 16(30):40100-40110. PubMed ID: 39038810 [TBL] [Abstract][Full Text] [Related]
18. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
19. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores. Si W; Yang H; Sha J; Zhang Y; Chen Y Electrophoresis; 2019 Aug; 40(16-17):2117-2124. PubMed ID: 30779188 [TBL] [Abstract][Full Text] [Related]
20. Influence of Chain Architecture on Nanopore Accessibility in Polyelectrolyte Block-Co-Oligomer Functionalized Mesopores. Brilmayer R; Hess C; Andrieu-Brunsen A Small; 2019 Oct; 15(41):e1902710. PubMed ID: 31448574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]