These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38536735)
1. Solvent-induced dual nucleophiles and the α-effect in the S Wu X; Bickelhaupt FM; Xie J Phys Chem Chem Phys; 2024 Apr; 26(15):11320-11330. PubMed ID: 38536735 [TBL] [Abstract][Full Text] [Related]
2. Investigating the competing E2 and S Wu X; Zhang S; Xie J Phys Chem Chem Phys; 2022 Jun; 24(21):12993-13005. PubMed ID: 35582984 [TBL] [Abstract][Full Text] [Related]
3. Competing C and N as Reactive Centers for Microsolvated Ambident Nucleophiles CN Liu X; Tian S; Guo W; Li H; Pang B; Wu Y J Phys Chem A; 2024 Jun; 128(23):4651-4662. PubMed ID: 38819200 [TBL] [Abstract][Full Text] [Related]
7. Investigating the α-effect in gas-phase S(N)2 reactions of microsolvated anions. Thomsen DL; Reece JN; Nichols CM; Hammerum S; Bierbaum VM J Am Chem Soc; 2013 Oct; 135(41):15508-14. PubMed ID: 24047410 [TBL] [Abstract][Full Text] [Related]
8. The α-effect and competing mechanisms: the gas-phase reactions of microsolvated anions with methyl formate. Thomsen DL; Nichols CM; Reece JN; Hammerum S; Bierbaum VM J Am Soc Mass Spectrom; 2014 Feb; 25(2):159-68. PubMed ID: 24346962 [TBL] [Abstract][Full Text] [Related]
9. The α-effect in gas-phase SN2 reactions of microsolvated anions: methanol as a solvent. Thomsen DL; Reece JN; Nichols CM; Hammerum S; Bierbaum VM J Phys Chem A; 2014 Sep; 118(37):8060-6. PubMed ID: 24117206 [TBL] [Abstract][Full Text] [Related]
10. Microsolvation effects on the reactivity of oxy-nucleophiles: the case of gas-phase S Yun-Yun L; Fang-Zhou Q; Jun Z; Yi R; Kai-Chung L J Mol Model; 2017 Jun; 23(6):192. PubMed ID: 28528446 [TBL] [Abstract][Full Text] [Related]
11. Proton transfer-induced competing product channels of microsolvated Y Ji X; Xie J Phys Chem Chem Phys; 2022 Mar; 24(12):7539-7550. PubMed ID: 35289813 [TBL] [Abstract][Full Text] [Related]
12. How Solvation Influences the S Hansen T; Roozee JC; Bickelhaupt FM; Hamlin TA J Org Chem; 2022 Feb; 87(3):1805-1813. PubMed ID: 34932346 [TBL] [Abstract][Full Text] [Related]
13. Dynamic exit-channel pathways of the microsolvated HOO Yu F J Chem Phys; 2018 Jan; 148(1):014302. PubMed ID: 29306291 [TBL] [Abstract][Full Text] [Related]
14. Competition between Elimination and Substitution for Ambident Nucleophiles CN Liu X; Guo W; Feng H; Pang B; Wu Y J Phys Chem A; 2023 Sep; 127(35):7373-7382. PubMed ID: 37639466 [TBL] [Abstract][Full Text] [Related]
15. Nucleophile Effects on the E2/S Zhao S; Fu G; Zhen W; Wang H; Liu M; Yang L; Zhang J J Phys Chem A; 2023 Apr; 127(15):3381-3389. PubMed ID: 37039624 [TBL] [Abstract][Full Text] [Related]
16. Benchmark Tasi DA; Czakó G Phys Chem Chem Phys; 2024 Jun; 26(22):16048-16059. PubMed ID: 38779842 [TBL] [Abstract][Full Text] [Related]
17. S Vermeeren P; Hansen T; Grasser M; Silva DR; Hamlin TA; Bickelhaupt FM J Org Chem; 2020 Nov; 85(21):14087-14093. PubMed ID: 33079542 [TBL] [Abstract][Full Text] [Related]
18. Backside versus Frontside S Remmerswaal WA; de Jong T; van de Vrande KNA; Louwersheimer R; Verwaal T; Filippov DV; Codée JDC; Hansen T Chemistry; 2024 May; 30(25):e202400590. PubMed ID: 38385647 [TBL] [Abstract][Full Text] [Related]
19. How a Solvent Molecule Affects Competing Elimination and Substitution Dynamics. Insight into Mechanism Evolution with Increased Solvation. Liu X; Zhang J; Yang L; Hase WL J Am Chem Soc; 2018 Sep; 140(35):10995-11005. PubMed ID: 29968466 [TBL] [Abstract][Full Text] [Related]
20. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone. Li QG; Xu K; Ren Y J Phys Chem A; 2015 Apr; 119(17):3878-86. PubMed ID: 25837687 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]