These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38536767)

  • 41. NDI-integrated rotaxane/catenane and their interactions with anions.
    Nandi M; Bej S; Ghosh P
    Dalton Trans; 2022 Sep; 51(35):13507-13514. PubMed ID: 35997084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic Metalloporphyrin-Based [2]Rotaxane Molecular Shuttles Stimulated by Neutral Lewis Base and Anion Coordination.
    Wilmore JT; Cheong Tse Y; Docker A; Whitehead C; Williams CK; Beer PD
    Chemistry; 2023 Jun; 29(33):e202300608. PubMed ID: 36929530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion.
    Hiratani K; Kaneyama M; Nagawa Y; Koyama E; Kanesato M
    J Am Chem Soc; 2004 Oct; 126(42):13568-9. PubMed ID: 15493885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expanding the scope of the anion templated synthesis of interlocked structures.
    Spence GT; Beer PD
    Acc Chem Res; 2013 Feb; 46(2):571-86. PubMed ID: 23190374
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane.
    Barendt TA; Ferreira L; Marques I; Félix V; Beer PD
    J Am Chem Soc; 2017 Jul; 139(26):9026-9037. PubMed ID: 28590726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts.
    Langton MJ; Robinson SW; Marques I; Félix V; Beer PD
    Nat Chem; 2014 Dec; 6(12):1039-43. PubMed ID: 25411880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorescent charge-assisted halogen-bonding macrocyclic halo-imidazolium receptors for anion recognition and sensing in aqueous media.
    Zapata F; Caballero A; White NG; Claridge TD; Costa PJ; Félix V; Beer PD
    J Am Chem Soc; 2012 Jul; 134(28):11533-41. PubMed ID: 22703526
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Luminescent Anion Sensing by Transition-Metal Dipyridylbenzene Complexes Incorporated into Acyclic, Macrocyclic and Interlocked Hosts.
    Knighton RC; Dapin S; Beer PD
    Chemistry; 2020 Apr; 26(23):5288-5296. PubMed ID: 32130744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A molecular shuttle for driving a multilevel fluorescence switch.
    Zhou W; Li J; He X; Li C; Lv J; Li Y; Wang S; Liu H; Zhu D
    Chemistry; 2008; 14(2):754-63. PubMed ID: 17960552
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cationic all-halogen bonding rotaxanes for halide anion recognition.
    Li X; Lim JYC; Beer PD
    Faraday Discuss; 2017 Oct; 203():245-255. PubMed ID: 28726932
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle.
    Waelès P; Fournel-Marotte K; Coutrot F
    Chemistry; 2017 Aug; 23(48):11529-11539. PubMed ID: 28594431
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Active metal template synthesis of a neutral indolocarbazole-containing [2]rotaxane host system for selective oxoanion recognition.
    Brown A; Lang T; Mullen KM; Beer PD
    Org Biomol Chem; 2017 May; 15(21):4587-4594. PubMed ID: 28530752
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station.
    Kumpulainen T; Panman MR; Bakker BH; Hilbers M; Woutersen S; Brouwer AM
    J Am Chem Soc; 2019 Dec; 141(48):19118-19129. PubMed ID: 31697078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Squaramide-Based Heteroditopic [2]Rotaxanes for Sodium Halide Ion-Pair Recognition.
    Arun A; Docker A; Min Tay H; Beer PD
    Chemistry; 2023 Sep; 29(49):e202301446. PubMed ID: 37300836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Infrared study of intercomponent interactions in a switchable hydrogen-bonded rotaxane.
    Jagesar DC; Hartl F; Buma WJ; Brouwer AM
    Chemistry; 2008; 14(6):1935-46. PubMed ID: 18064626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A translationally active ligand based on a [2]rotaxane molecular shuttle with a 2,2'-bipyridyl core.
    Dhara A; Dmitrienko A; Hussein RN; Sotomayor A; Wilson BH; Loeb SJ
    Chem Sci; 2023 Jul; 14(26):7215-7220. PubMed ID: 37416700
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Successive Translocation of the Rings in a [3]Rotaxane.
    Jagesar DC; Wiering PG; Kay ER; Leigh DA; Brouwer AM
    Chemphyschem; 2016 Jun; 17(12):1902-12. PubMed ID: 26918870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A rotaxane host system containing integrated triazole C-H hydrogen bond donors for anion recognition.
    White NG; Beer PD
    Org Biomol Chem; 2013 Feb; 11(8):1326-33. PubMed ID: 23307098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Solvent Effects in Halogen and Hydrogen Bonding Mediated Electrochemical Anion Sensing in Aqueous Solution and at Interfaces.
    Patrick SC; Hein R; Docker A; Beer PD; Davis JJ
    Chemistry; 2021 Jul; 27(39):10201-10209. PubMed ID: 33881781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Halogen Bonding Heteroditopic Materials for Cooperative Sodium Iodide Binding and Extraction.
    Docker A; Stevens JG; Beer PD
    Chemistry; 2021 Oct; 27(59):14600-14604. PubMed ID: 34520586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.