These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Calcium-dependent and -independent lipid transfer mediated by tricalbins in yeast. Qian T; Li C; He R; Wan C; Liu Y; Yu H J Biol Chem; 2021; 296():100729. PubMed ID: 33933446 [TBL] [Abstract][Full Text] [Related]
3. Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity. Collado J; Kalemanov M; Campelo F; Bourgoint C; Thomas F; Loewith R; Martínez-Sánchez A; Baumeister W; Stefan CJ; Fernández-Busnadiego R Dev Cell; 2019 Nov; 51(4):476-487.e7. PubMed ID: 31743662 [TBL] [Abstract][Full Text] [Related]
4. Cvm1 is a component of multiple vacuolar contact sites required for sphingolipid homeostasis. Bisinski DD; Gomes Castro I; Mari M; Walter S; Fröhlich F; Schuldiner M; González Montoro A J Cell Biol; 2022 Aug; 221(8):. PubMed ID: 35766971 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the yeast tricalbins: membrane-bound multi-C2-domain proteins that form complexes involved in membrane trafficking. Creutz CE; Snyder SL; Schulz TA Cell Mol Life Sci; 2004 May; 61(10):1208-20. PubMed ID: 15141306 [TBL] [Abstract][Full Text] [Related]
7. The tricalbin family of membrane contact site tethers is involved in the transcriptional responses of Saccharomyces cerevisiae to glucose. Schlarmann P; Sakuragi K; Ikeda A; Yang Y; Sasaki S; Hanaoka K; Araki M; Shibata T; Kanai M; Funato K J Biol Chem; 2024 Sep; 300(9):107665. PubMed ID: 39128724 [TBL] [Abstract][Full Text] [Related]
8. The Tricalbin-Family Endoplasmic Reticulum-Plasma Membrane Tethering Proteins Attenuate ROS-Involved Caspofungin Sensitivity in Candida albicans. Yang L; Zhu H; Li M; Yu Q Microbiol Spectr; 2022 Dec; 10(6):e0207922. PubMed ID: 36445092 [TBL] [Abstract][Full Text] [Related]
9. Tricalbins Contribute to Cellular Lipid Flux and Form Curved ER-PM Contacts that Are Bridged by Rod-Shaped Structures. Hoffmann PC; Bharat TAM; Wozny MR; Boulanger J; Miller EA; Kukulski W Dev Cell; 2019 Nov; 51(4):488-502.e8. PubMed ID: 31743663 [TBL] [Abstract][Full Text] [Related]
10. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Garcia EJ; Liao PC; Tan G; Vevea JD; Sing CN; Tsang CA; McCaffery JM; Boldogh IR; Pon LA Autophagy; 2021 Sep; 17(9):2363-2383. PubMed ID: 33021864 [TBL] [Abstract][Full Text] [Related]
12. LDO proteins and Vac8 form a vacuole-lipid droplet contact site to enable starvation-induced lipophagy in yeast. Álvarez-Guerra I; Block E; Broeskamp F; Gabrijelčič S; Infant T; de Ory A; Habernig L; Andréasson C; Levine TP; Höög JL; Büttner S Dev Cell; 2024 Mar; 59(6):759-775.e5. PubMed ID: 38354739 [TBL] [Abstract][Full Text] [Related]
13. Vps39 Interacts with Tom40 to Establish One of Two Functionally Distinct Vacuole-Mitochondria Contact Sites. González Montoro A; Auffarth K; Hönscher C; Bohnert M; Becker T; Warscheid B; Reggiori F; van der Laan M; Fröhlich F; Ungermann C Dev Cell; 2018 Jun; 45(5):621-636.e7. PubMed ID: 29870720 [TBL] [Abstract][Full Text] [Related]
14. Vacuole-Specific Lipid Release for Tracking Intracellular Lipid Metabolism and Transport in Girik V; Feng S; Hariri H; Henne WM; Riezman H ACS Chem Biol; 2022 Jun; 17(6):1485-1494. PubMed ID: 35667650 [TBL] [Abstract][Full Text] [Related]
15. Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. Hariri H; Rogers S; Ugrankar R; Liu YL; Feathers JR; Henne WM EMBO Rep; 2018 Jan; 19(1):57-72. PubMed ID: 29146766 [TBL] [Abstract][Full Text] [Related]
16. Plasma Membrane Protein Nce102 Modulates Morphology and Function of the Yeast Vacuole. Vaskovicova K; Vesela P; Zahumensky J; Folkova D; Balazova M; Malinsky J Biomolecules; 2020 Oct; 10(11):. PubMed ID: 33114062 [TBL] [Abstract][Full Text] [Related]
17. Fatty Acyl Coenzyme A Synthetase Fat1p Regulates Vacuolar Structure and Stationary-Phase Lipophagy in Saccharomyces cerevisiae. Qiu F; Kang N; Tan J; Yan S; Lin L; Cai L; Goodman JM; Gao Q Microbiol Spectr; 2023 Feb; 11(1):e0462522. PubMed ID: 36598223 [TBL] [Abstract][Full Text] [Related]
19. Methylglyoxal inhibits nuclear division through alterations in vacuolar morphology and accumulation of Atg18 on the vacuolar membrane in Saccharomyces cerevisiae. Nomura W; Aoki M; Inoue Y Sci Rep; 2020 Aug; 10(1):13887. PubMed ID: 32807835 [TBL] [Abstract][Full Text] [Related]