BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 38536918)

  • 21. Glutamine and cancer: cell biology, physiology, and clinical opportunities.
    Hensley CT; Wasti AT; DeBerardinis RJ
    J Clin Invest; 2013 Sep; 123(9):3678-84. PubMed ID: 23999442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.
    Gao P; Tchernyshyov I; Chang TC; Lee YS; Kita K; Ochi T; Zeller KI; De Marzo AM; Van Eyk JE; Mendell JT; Dang CV
    Nature; 2009 Apr; 458(7239):762-5. PubMed ID: 19219026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells.
    Yuneva M; Zamboni N; Oefner P; Sachidanandam R; Lazebnik Y
    J Cell Biol; 2007 Jul; 178(1):93-105. PubMed ID: 17606868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamine antagonists may KEAP lung cancer in check.
    Blatt EB; DeBerardinis RJ
    Sci Adv; 2024 Mar; 10(13):eado7808. PubMed ID: 38536918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung.
    Zhang B; Ma Z; Tan B; Lin N
    Expert Opin Ther Targets; 2019 Mar; 23(3):241-250. PubMed ID: 30556750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The involvement of NRF2 in lung cancer.
    Bauer AK; Hill T; Alexander CM
    Oxid Med Cell Longev; 2013; 2013():746432. PubMed ID: 23577226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism.
    Song MY; Lee DY; Chun KS; Kim EH
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellular Modulators of the NRF2/KEAP1 Signaling Pathway in Prostate Cancer.
    Tossetta G; Fantone S; Marzioni D; Mazzucchelli R
    Front Biosci (Landmark Ed); 2023 Jul; 28(7):143. PubMed ID: 37525922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Battles against aberrant KEAP1-NRF2 signaling in lung cancer: intertwined metabolic and immune networks.
    Xu K; Ma J; Hall SRR; Peng RW; Yang H; Yao F
    Theranostics; 2023; 13(2):704-723. PubMed ID: 36632216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein-Protein Interaction.
    Zhang Y; Shi Z; Zhou Y; Xiao Q; Wang H; Peng Y
    J Med Chem; 2020 Aug; 63(15):7986-8002. PubMed ID: 32233486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors.
    Zhao Z; Dong R; You Q; Jiang Z
    J Med Chem; 2023 Jul; 66(14):9325-9344. PubMed ID: 37441735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of NRF2 in Lung Cancer.
    Sánchez-Ortega M; Carrera AC; Garrido A
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors.
    Mou Y; Wen S; Li YX; Gao XX; Zhang X; Jiang ZY
    Eur J Med Chem; 2020 Sep; 202():112532. PubMed ID: 32668381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress.
    Suzuki T; Yamamoto M
    J Biol Chem; 2017 Oct; 292(41):16817-16824. PubMed ID: 28842501
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Keap1-Nrf2 signalling in pancreatic cancer.
    Hayes AJ; Skouras C; Haugk B; Charnley RM
    Int J Biochem Cell Biol; 2015 Aug; 65():288-99. PubMed ID: 26117456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Basis of the KEAP1-NRF2 Signaling Pathway.
    Suzuki T; Takahashi J; Yamamoto M
    Mol Cells; 2023 Mar; 46(3):133-141. PubMed ID: 36994473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. KEAP1/NRF2 (NFE2L2) mutations in NSCLC - Fuel for a superresistant phenotype?
    Dempke WCM; Reck M
    Lung Cancer; 2021 Sep; 159():10-17. PubMed ID: 34303275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From germ cells to neonates: the beginning of life and the KEAP1-NRF2 system.
    Matsumaru D; Motohashi H
    J Biochem; 2020 Feb; 167(2):133-138. PubMed ID: 31518425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1).
    Bresciani A; Missineo A; Gallo M; Cerretani M; Fezzardi P; Tomei L; Cicero DO; Altamura S; Santoprete A; Ingenito R; Bianchi E; Pacifici R; Dominguez C; Munoz-Sanjuan I; Harper S; Toledo-Sherman L; Park LC
    Arch Biochem Biophys; 2017 Oct; 631():31-41. PubMed ID: 28801166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives.
    Panieri E; Telkoparan-Akillilar P; Suzen S; Saso L
    Biomolecules; 2020 May; 10(5):. PubMed ID: 32443774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.