These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38536965)
1. Nonadiabatic Conical Intersection Dynamics in the Local Diabatic Representation with Strang Splitting and Fourier Basis. Gu B J Chem Theory Comput; 2024 Apr; 20(7):2711-2718. PubMed ID: 38536965 [TBL] [Abstract][Full Text] [Related]
2. A Discrete-Variable Local Diabatic Representation of Conical Intersection Dynamics. Gu B J Chem Theory Comput; 2023 Oct; 19(19):6557-6563. PubMed ID: 37737832 [TBL] [Abstract][Full Text] [Related]
3. Making Peace with Random Phases: Ab Initio Conical Intersection Quantum Dynamics in Random Gauges. Zhu X; Gu B J Phys Chem Lett; 2024 Aug; 15(33):8487-8493. PubMed ID: 39133253 [TBL] [Abstract][Full Text] [Related]
4. The best of both Reps-Diabatized Gaussians on adiabatic surfaces. Meek GA; Levine BG J Chem Phys; 2016 Nov; 145(18):184103. PubMed ID: 27846679 [TBL] [Abstract][Full Text] [Related]
5. A discontinuous basis enables numerically exact solution of the Schrödinger equation around conical intersections in the adiabatic representation. Fedorov DA; Levine BG J Chem Phys; 2019 Feb; 150(5):054102. PubMed ID: 30736673 [TBL] [Abstract][Full Text] [Related]
6. Nondirect-Product Local Diabatic Representation with Smolyak Sparse Grids. Xie Y; Yang Y; Zhu X; Chen A; Gu B J Chem Theory Comput; 2024 Nov; 20(21):9512-9521. PubMed ID: 39413423 [TBL] [Abstract][Full Text] [Related]
7. Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection? Choi S; Vaníček J J Chem Phys; 2020 Dec; 153(21):211101. PubMed ID: 33291891 [TBL] [Abstract][Full Text] [Related]
8. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation. Zhu X; Yarkony DR J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048 [TBL] [Abstract][Full Text] [Related]
9. Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections. Meek GA; Levine BG J Chem Phys; 2016 May; 144(18):184109. PubMed ID: 27179473 [TBL] [Abstract][Full Text] [Related]
10. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings. Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499 [TBL] [Abstract][Full Text] [Related]
11. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics. Valero R; Truhlar DG J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756 [TBL] [Abstract][Full Text] [Related]
12. Up to a Sign. The Insidious Effects of Energetically Inaccessible Conical Intersections on Unimolecular Reactions. Xie C; Malbon CL; Guo H; Yarkony DR Acc Chem Res; 2019 Feb; 52(2):501-509. PubMed ID: 30707546 [TBL] [Abstract][Full Text] [Related]
14. Quasi-Diabatic Representation for Nonadiabatic Dynamics Propagation. Mandal A; Yamijala SS; Huo P J Chem Theory Comput; 2018 Apr; 14(4):1828-1840. PubMed ID: 29489359 [TBL] [Abstract][Full Text] [Related]
15. Two-state diabatic potential energy surfaces of ClH Yin Z; Guan Y; Fu B; Zhang DH Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342 [TBL] [Abstract][Full Text] [Related]
16. Coupled diabatic potential energy surfaces for studying the nonadiabatic dynamics at conical intersections in angular resolved photodetachment simulations of OHF--->OHF+e-. Gómez-Carrasco S; Aguado A; Paniagua M; Roncero O J Chem Phys; 2006 Oct; 125(16):164321. PubMed ID: 17092087 [TBL] [Abstract][Full Text] [Related]
17. Multimode quantum dynamics with multiple Davydov D Chen L; Gelin MF; Domcke W J Chem Phys; 2019 Jan; 150(2):024101. PubMed ID: 30646706 [TBL] [Abstract][Full Text] [Related]
18. Quasi-Diabatic Scheme for Nonadiabatic On-the-Fly Simulations. Zhou W; Mandal A; Huo P J Phys Chem Lett; 2019 Nov; 10(22):7062-7070. PubMed ID: 31665889 [TBL] [Abstract][Full Text] [Related]
19. Constructing diabatic representations using adiabatic and approximate diabatic data--Coping with diabolical singularities. Zhu X; Yarkony DR J Chem Phys; 2016 Jan; 144(4):044104. PubMed ID: 26827199 [TBL] [Abstract][Full Text] [Related]
20. Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin-orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH Wang Y; Guo H; Yarkony DR Phys Chem Chem Phys; 2022 Jun; 24(24):15060-15067. PubMed ID: 35696936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]