These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38537584)

  • 1. Nano- and microplastic PBK modeling in the context of human exposure and risk assessment.
    Wardani I; Hazimah Mohamed Nor N; Wright SL; Kooter IM; Koelmans AA
    Environ Int; 2024 Apr; 186():108504. PubMed ID: 38537584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles.
    Chen CY; Lin Z
    Environ Int; 2024 Apr; 186():108617. PubMed ID: 38599027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks - development and application of a toxicity study assessment tool.
    Gouin T; Ellis-Hutchings R; Thornton Hampton LM; Lemieux CL; Wright SL
    Microplast nanoplast; 2022; 2(1):2. PubMed ID: 35098152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiologically based kinetic (PBK) modeling of propiconazole using a machine learning-enhanced read-across approach for interspecies extrapolation.
    Wu Y; Sinclair G; Avanasi R; Pecquet A
    Environ Int; 2024 Jul; 189():108804. PubMed ID: 38857551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Scoping Review of Technologies and Their Applicability for Exposome-Based Risk Assessment in the Oil and Gas Industry.
    Kuijpers E; van Wel L; Loh M; Galea KS; Makris KC; Stierum R; Fransman W; Pronk A
    Ann Work Expo Health; 2021 Nov; 65(9):1011-1028. PubMed ID: 34219141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of clearance, retention, and translocation of inhaled gold nanoparticles in rats.
    Krikas A; Neofytou P; Gakis GP; Xiarchos I; Charitidis C; Tran L
    Inhal Toxicol; 2022; 34(13-14):361-379. PubMed ID: 36053230
    [No Abstract]   [Full Text] [Related]  

  • 7. Gaining acceptance in next generation PBK modelling approaches for regulatory assessments - An OECD international effort.
    Paini A; Tan YM; Sachana M; Worth A
    Comput Toxicol; 2021 May; 18():100163. PubMed ID: 34027244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting points of departure for risk assessment based on in vitro cytotoxicity data and physiologically based kinetic (PBK) modeling: The case of kidney toxicity induced by aristolochic acid I.
    Abdullah R; Alhusainy W; Woutersen J; Rietjens IM; Punt A
    Food Chem Toxicol; 2016 Jun; 92():104-16. PubMed ID: 27016491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing human internal exposure to chemicals at different physical activity levels: A physiologically based kinetic (PBK) model incorporating metabolic equivalent of task (MET).
    Li Z; Zhang X
    Environ Int; 2023 Dec; 182():108312. PubMed ID: 37956621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of in vitro experimental variation in kinetic parameters on physiologically based kinetic (PBK) model simulations.
    Punt A; Bos P; Hakkert B; Louisse J
    ALTEX; 2023; 40(2):237–247. PubMed ID: 35901496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically-Based Kinetic Modeling of Intravenously Administered Gold (Au) Nanoparticles.
    Minnema J; Vandebriel RJ; Boer K; Klerx W; De Jong WH; Delmaar CJE
    Small; 2023 May; 19(21):e2207326. PubMed ID: 36828794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADME characterization and PBK model development of 3 highly protein-bound UV filters through topical application.
    Li H; Bunglawala F; Hewitt NJ; Pendlington R; Cubberley R; Nicol B; Spriggs S; Baltazar M; Cable S; Dent M
    Toxicol Sci; 2023 Oct; 196(1):1-15. PubMed ID: 37584694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk management frameworks for human health and environmental risks.
    Jardine C; Hrudey S; Shortreed J; Craig L; Krewski D; Furgal C; McColl S
    J Toxicol Environ Health B Crit Rev; 2003; 6(6):569-720. PubMed ID: 14698953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods Matter: Methods for Sampling Microplastic and Other Anthropogenic Particles and Their Implications for Monitoring and Ecological Risk Assessment.
    Hung C; Klasios N; Zhu X; Sedlak M; Sutton R; Rochman CM
    Integr Environ Assess Manag; 2021 Jan; 17(1):282-291. PubMed ID: 32770796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generic avian physiologically-based kinetic (PBK) model and its application in three bird species.
    Baier V; Paini A; Schaller S; Scanes CG; Bone AJ; Ebeling M; Preuss TG; Witt J; Heckmann D
    Environ Int; 2022 Nov; 169():107547. PubMed ID: 36179644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illustrating a Species Sensitivity Distribution for Nano- and Microplastic Particles Using Bayesian Hierarchical Modeling.
    Takeshita KM; Iwasaki Y; Sinclair TM; Hayashi TI; Naito W
    Environ Toxicol Chem; 2022 Apr; 41(4):954-960. PubMed ID: 35226391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologically based kinetic (PBK) modelling and human biomonitoring data for mixture risk assessment.
    Pletz J; Blakeman S; Paini A; Parissis N; Worth A; Andersson AM; Frederiksen H; Sakhi AK; Thomsen C; Bopp SK
    Environ Int; 2020 Oct; 143():105978. PubMed ID: 32763630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment.
    Najjar A; Punt A; Wambaugh J; Paini A; Ellison C; Fragki S; Bianchi E; Zhang F; Westerhout J; Mueller D; Li H; Shi Q; Gant TW; Botham P; Bars R; Piersma A; van Ravenzwaay B; Kramer NI
    Arch Toxicol; 2022 Dec; 96(12):3407-3419. PubMed ID: 36063173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the multidimensionality of microplastics across environmental compartments.
    Kooi M; Primpke S; Mintenig SM; Lorenz C; Gerdts G; Koelmans AA
    Water Res; 2021 Sep; 202():117429. PubMed ID: 34304075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.