These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38537641)

  • 21. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics.
    Burton A; Obaid SN; Vázquez-Guardado A; Schmit MB; Stuart T; Cai L; Chen Z; Kandela I; Haney CR; Waters EA; Cai H; Rogers JA; Lu L; Gutruf P
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2835-2845. PubMed ID: 31974306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Customizable, wireless and implantable neural probe design and fabrication via 3D printing.
    Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG
    Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations.
    Park J; Kim K; Kim Y; Kim TS; Min IS; Li B; Cho YU; Lee C; Lee JY; Gao Y; Kang K; Kim DH; Choi WJ; Shin HB; Kang HK; Song YM; Cheng H; Cho IJ; Yu KJ
    Sci Adv; 2023 Sep; 9(39):eadi8918. PubMed ID: 37756405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing and Implementing an Implantable Wireless Micromanometer System for Real-Time Bladder Pressure Monitoring: A Preliminary Study.
    Li YT; Yang LY; Hsu WT; Peng CW
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
    Borton DA; Yin M; Aceros J; Nurmikko A
    J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wireless opto-electro neural interface for experiments with small freely behaving animals.
    Jia Y; Khan W; Lee B; Fan B; Madi F; Weber A; Li W; Ghovanloo M
    J Neural Eng; 2018 Aug; 15(4):046032. PubMed ID: 29799437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics.
    Jeong JW; McCall JG; Shin G; Zhang Y; Al-Hasani R; Kim M; Li S; Sim JY; Jang KI; Shi Y; Hong DY; Liu Y; Schmitz GP; Xia L; He Z; Gamble P; Ray WZ; Huang Y; Bruchas MR; Rogers JA
    Cell; 2015 Jul; 162(3):662-74. PubMed ID: 26189679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch.
    Lee K; Ni X; Lee JY; Arafa H; Pe DJ; Xu S; Avila R; Irie M; Lee JH; Easterlin RL; Kim DH; Chung HU; Olabisi OO; Getaneh S; Chung E; Hill M; Bell J; Jang H; Liu C; Park JB; Kim J; Kim SB; Mehta S; Pharr M; Tzavelis A; Reeder JT; Huang I; Deng Y; Xie Z; Davies CR; Huang Y; Rogers JA
    Nat Biomed Eng; 2020 Feb; 4(2):148-158. PubMed ID: 31768002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Freeing the Animal Model: A Modular, Wirelessly Powered, Implantable Electronic Platform.
    Greene JJ; Gorelik P; Mazor O; Guarin DL; Malk R; Hadlock T
    Plast Reconstr Surg; 2024 Mar; 153(3):568e-572e. PubMed ID: 37184506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice.
    de Haas R; Struikmans R; van der Plasse G; van Kerkhof L; Brakkee JH; Kas MJ; Westenberg HG
    J Neurosci Methods; 2012 Jul; 209(1):113-9. PubMed ID: 22677175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.
    Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical potential of implantable wireless sensors for orthopedic treatments.
    Karipott SS; Nelson BD; Guldberg RE; Ong KG
    Expert Rev Med Devices; 2018 Apr; 15(4):255-264. PubMed ID: 29558820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience.
    Qazi R; Parker KE; Kim CY; Rill R; Norris MR; Chung J; Bilbily J; Kim JR; Walicki MC; Gereau GB; Lim H; Xiong Y; Lee JR; Tapia MA; Kravitz AV; Will MJ; Ha S; McCall JG; Jeong JW
    Nat Biomed Eng; 2022 Jun; 6(6):771-786. PubMed ID: 34824397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wireless multi-channel recording system for freely behaving mice and rats.
    Fan D; Rich D; Holtzman T; Ruther P; Dalley JW; Lopez A; Rossi MA; Barter JW; Salas-Meza D; Herwik S; Holzhammer T; Morizio J; Yin HH
    PLoS One; 2011; 6(7):e22033. PubMed ID: 21765934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.