These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38537809)
1. Discovery and characterization of sgRNA-sequence-independent DNA cleavage from CRISPR/Cas9 in mouse embryos. Yang L; Chen L; Zheng Y; Deng L; Bai R; Zhang T; Wang Z; Li S Genomics; 2024 May; 116(3):110836. PubMed ID: 38537809 [TBL] [Abstract][Full Text] [Related]
2. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system. Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359 [TBL] [Abstract][Full Text] [Related]
3. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing. Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475 [TBL] [Abstract][Full Text] [Related]
4. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos. Bekaert B; Boel A; Rybouchkin A; Cosemans G; Declercq S; Chuva de Sousa Lopes SM; Parrington J; Stoop D; Coucke P; Menten B; Heindryckx B J Assist Reprod Genet; 2024 Jun; 41(6):1605-1617. PubMed ID: 38557805 [TBL] [Abstract][Full Text] [Related]
5. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. Feng Y; Liu S; Chen R; Xie A J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189 [TBL] [Abstract][Full Text] [Related]
6. Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos. Carey K; Ryu J; Uh K; Lengi AJ; Clark-Deener S; Corl BA; Lee K BMC Biotechnol; 2019 May; 19(1):25. PubMed ID: 31060546 [TBL] [Abstract][Full Text] [Related]
8. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo. Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449 [TBL] [Abstract][Full Text] [Related]
9. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm. Zhou H; Zhou M; Li D; Manthey J; Lioutikova E; Wang H; Zeng X BMC Genomics; 2017 Nov; 18(Suppl 9):826. PubMed ID: 29219081 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique. Zhang B; Zhou J; Li M; Wei Y; Wang J; Wang Y; Shi P; Li X; Huang Z; Tang H; Song Z Anal Bioanal Chem; 2021 Apr; 413(9):2447-2456. PubMed ID: 33661348 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. Chen S; Lee B; Lee AY; Modzelewski AJ; He L J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215 [TBL] [Abstract][Full Text] [Related]
12. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation. Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T Anim Sci J; 2019 Jan; 90(1):55-61. PubMed ID: 30368976 [TBL] [Abstract][Full Text] [Related]
13. Gene editing in mouse zygotes using the CRISPR/Cas9 system. Wefers B; Bashir S; Rossius J; Wurst W; Kühn R Methods; 2017 May; 121-122():55-67. PubMed ID: 28263886 [TBL] [Abstract][Full Text] [Related]
14. Genome Editing with CRISPR-Cas9: Can It Get Any Better? Haeussler M; Concordet JP J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042 [TBL] [Abstract][Full Text] [Related]
15. Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features. Baranova SV; Zhdanova PV; Koveshnikova AD; Pestryakov PE; Vokhtantsev IP; Chernonosov AA; Koval VV Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409191 [TBL] [Abstract][Full Text] [Related]
16. Methods for Measuring CRISPR/Cas9 DNA Cleavage in Cells. Cromwell CR; Jovel J; Hubbard BP Methods Mol Biol; 2021; 2162():197-213. PubMed ID: 32926384 [TBL] [Abstract][Full Text] [Related]
17. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
18. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040 [TBL] [Abstract][Full Text] [Related]
19. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
20. HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site. Wang Z; Wang W; Cui YC; Pan Q; Zhu W; Gendron P; Guo F; Cen S; Witcher M; Liang C J Virol; 2018 Oct; 92(20):. PubMed ID: 30068653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]