These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38537824)

  • 1. An optimized NARX-based model for predicting thermal dynamics and heatwaves in rivers.
    Zhu S; Di Nunno F; Sun J; Sojka M; Ptak M; Granata F
    Sci Total Environ; 2024 May; 926():171954. PubMed ID: 38537824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave.
    Zhu S; Di Nunno F; Ptak M; Sojka M; Granata F
    Sci Total Environ; 2023 Dec; 905():167121. PubMed ID: 37717777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling water quality in an urban river using hydrological factors--data driven approaches.
    Chang FJ; Tsai YH; Chen PA; Coynel A; Vachaud G
    J Environ Manage; 2015 Mar; 151():87-96. PubMed ID: 25544251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers.
    Di Nunno F; Race M; Granata F
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40623-40642. PubMed ID: 35083679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thermopeaking on the thermal response of alpine river systems to heatwaves.
    Feng M; Zolezzi G; Pusch M
    Sci Total Environ; 2018 Jan; 612():1266-1275. PubMed ID: 28898932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing drought events occurred in the Yangtze River Basin from 1979 to 2017 by reconstructing water storage anomalies based on GRACE and meteorological data.
    Zheng S; Zhang Z; Yan H; Zhao Y; Li Z
    Sci Total Environ; 2023 Apr; 868():161755. PubMed ID: 36690099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing the performance of the NARX model for forecasting the water level in the Chikugo River estuary, Japan.
    Vidyalashmi K; Chandana L M; Nandana JS; Azhikodan G; Priya KL; Yokoyama K; Paramasivam SK
    Environ Res; 2024 Jun; 251(Pt 1):118531. PubMed ID: 38423499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble learning model identifies adaptation classification and turning points of river microbial communities in response to heatwaves.
    Qu Q; Xu J; Kang W; Feng R; Hu X
    Glob Chang Biol; 2023 Dec; 29(24):6988-7000. PubMed ID: 37847144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear autoregressive neural networks with external inputs for forecasting of typhoon inundation level.
    Ouyang HT
    Environ Monit Assess; 2017 Aug; 189(8):376. PubMed ID: 28681325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of variational Gaussian process NARX models with GPGPU.
    Krivec T; Papa G; Kocijan J
    ISA Trans; 2021 Mar; 109():141-151. PubMed ID: 33059907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques.
    Chang FJ; Chen PA; Chang LC; Tsai YH
    Sci Total Environ; 2016 Aug; 562():228-236. PubMed ID: 27100003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting groundwater level of karst aquifer in a large mining area using partial mutual information and NARX hybrid model.
    Zhang WR; Liu TX; Duan LM; Zhou SH; Sun L; Shi ZM; Qu S; Bian MM; Yu DG; Singh VP
    Environ Res; 2022 Oct; 213():113747. PubMed ID: 35753379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projecting the excess mortality due to heatwave and its characteristics under climate change, population and adaptation scenarios.
    Liu J; Dong H; Li M; Wu Y; Zhang C; Chen J; Yang Z; Lin G; Liu L; Yang J
    Int J Hyg Environ Health; 2023 May; 250():114157. PubMed ID: 36989996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of heatwaves based on the universal thermal climate index and apparent temperature over mainland Southeast Asia.
    Liu L; Qin X
    Int J Biometeorol; 2023 Dec; 67(12):2055-2068. PubMed ID: 37878089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of past and future heatwaves based on a heat-associated mortality threshold: towards a heat health warning system.
    Kapwata T; Gebreslasie MT; Wright CY
    Environ Health; 2022 Nov; 21(1):112. PubMed ID: 36401226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the impacts of climate change on riverine thermal regimes in western Canada's largest Pacific watershed.
    Islam SU; Hay RW; Déry SJ; Booth BP
    Sci Rep; 2019 Aug; 9(1):11398. PubMed ID: 31388033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Scorching Truth: Investigating the Impact of Heatwaves on Selangor's Elderly Hospitalisations.
    Yong KH; Teo YN; Azadbakht M; Phung H; Chu C
    Int J Environ Res Public Health; 2023 May; 20(10):. PubMed ID: 37239636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal renaturation of rivers in the post-industrial age - An example of the Przemsza River basin (Poland).
    Marszelewski W; Pius B
    Sci Total Environ; 2021 May; 770():145207. PubMed ID: 33515885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models.
    Di Nunno F; Granata F; Gargano R; de Marinis G
    Environ Monit Assess; 2021 May; 193(6):350. PubMed ID: 34021408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.
    Scheurer K; Alewell C; Bänninger D; Burkhardt-Holm P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):232-42. PubMed ID: 19048320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.