These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38537865)

  • 1. Antimicrobial effects of cannabidiol on select agriculturally important Clostridia.
    Lakes JE; Ferrell JL; Berhow MA; Flythe MD
    Anaerobe; 2024 Jun; 87():102843. PubMed ID: 38537865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased competiveness of the foodborne pathogen Campylobacter jejuni during Co-culture with the hyper-ammonia producing anaerobe Clostridium aminophilum.
    Anderson RC; Flythe MD; Krueger NA; Callaway TR; Edrington TS; Harvey RB; Nisbet DJ
    Folia Microbiol (Praha); 2010 Jul; 55(4):309-11. PubMed ID: 20680559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination.
    Krause DO; Russell JB
    Appl Environ Microbiol; 1996 Mar; 62(3):815-21. PubMed ID: 8975611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria.
    Flythe MD
    Lett Appl Microbiol; 2009 Jun; 48(6):712-7. PubMed ID: 19413813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov.
    Paster BJ; Russell JB; Yang CM; Chow JM; Woese CR; Tanner R
    Int J Syst Bacteriol; 1993 Jan; 43(1):107-10. PubMed ID: 8427801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630.
    Sangavai C; Chellapandi P
    Genomics; 2021 Nov; 113(6):4196-4205. PubMed ID: 34780936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-encoded ABCF factors implicated in intrinsic antibiotic resistance in Gram-positive bacteria: VmlR2, Ard1 and CplR.
    Obana N; Takada H; Crowe-McAuliffe C; Iwamoto M; Egorov AA; Wu KJY; Chiba S; Murina V; Paternoga H; Tresco BIC; Nomura N; Myers AG; Atkinson GC; Wilson DN; Hauryliuk V
    Nucleic Acids Res; 2023 May; 51(9):4536-4554. PubMed ID: 36951104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production.
    Rychlik JL; Russell JB
    Appl Environ Microbiol; 2002 Mar; 68(3):1040-6. PubMed ID: 11872448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of nisin and reutericyclin on resistance of endospores of Clostridium spp. to heat and high pressure.
    Hofstetter S; Gebhardt D; Ho L; Gänzle M; McMullen LM
    Food Microbiol; 2013 May; 34(1):46-51. PubMed ID: 23498177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Stickland Reaction Precursor
    Reed AD; Fletcher JR; Huang YY; Thanissery R; Rivera AJ; Parsons RJ; Stewart AK; Kountz DJ; Shen A; Balskus EP; Theriot CM
    mSphere; 2022 Apr; 7(2):e0092621. PubMed ID: 35350846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-Dependent Inhibition of Clostridioides difficile by Commensal
    Reed AD; Nethery MA; Stewart A; Barrangou R; Theriot CM
    J Bacteriol; 2020 May; 202(11):. PubMed ID: 32179626
    [No Abstract]   [Full Text] [Related]  

  • 12. Susceptibility of clostridia from farm animals to 21 antimicrobial agents including some used for growth promotion.
    Dutta GN; Devriese LA; Van Assche PF
    J Antimicrob Chemother; 1983 Oct; 12(4):347-56. PubMed ID: 6643330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The antimicrobial potential of cannabidiol.
    Blaskovich MAT; Kavanagh AM; Elliott AG; Zhang B; Ramu S; Amado M; Lowe GJ; Hinton AO; Pham DMT; Zuegg J; Beare N; Quach D; Sharp MD; Pogliano J; Rogers AP; Lyras D; Tan L; West NP; Crawford DW; Peterson ML; Callahan M; Thurn M
    Commun Biol; 2021 Jan; 4(1):7. PubMed ID: 33469147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of non-bacteriocin producing Streptococcus bovis strains to bind and transfer bovicin HC5 to other sensitive bacteria.
    Xavier BM; Russell JB
    Anaerobe; 2009 Aug; 15(4):168-72. PubMed ID: 19171197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiotic susceptibility of clinical isolates of clostridia.
    Brazier JS; Levett PN; Stannard AJ; Phillips KD; Willis AT
    J Antimicrob Chemother; 1985 Feb; 15(2):181-5. PubMed ID: 3872295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria.
    Sklenickova O; Flesar J; Kokoska L; Vlkova E; Halamova K; Malik J
    Molecules; 2010 Mar; 15(3):1270-9. PubMed ID: 20335979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adaptation and resistance of Clostridium aminophilum F to the butyrivibriocin-like substance of Butyrivibrio fibrisolvens JL5 and monensin.
    Rychlik JL; Russell JB
    FEMS Microbiol Lett; 2002 Mar; 209(1):93-8. PubMed ID: 12007660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials.
    Flythe MD; Russell JB
    FEMS Microbiol Ecol; 2004 Feb; 47(2):215-22. PubMed ID: 19712336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antibiotic susceptibility pattern of gas gangrene-forming
    Sárvári KP; Schoblocher D
    Infect Dis (Lond); 2020 Mar; 52(3):196-201. PubMed ID: 31778089
    [No Abstract]   [Full Text] [Related]  

  • 20. [On N2-fixing clostridia and bacilli from soils (author's transl)].
    Hammann R; Ottow JC
    Zentralbl Bakteriol Orig B; 1976 Mar; 161(5-6):527-33. PubMed ID: 970026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.