These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38537891)

  • 1. A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data.
    Wang Z; Rowe DB; Li X; Brown DA
    Magn Reson Imaging; 2024 Jun; 109():271-285. PubMed ID: 38537891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions.
    Yu CH; Prado R; Ombao H; Rowe D
    Biometrics; 2023 Jun; 79(2):616-628. PubMed ID: 35143043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data.
    Li WX; Lin QH; Zhang CY; Han Y; Li HJ; Calhoun VD
    J Neurosci Methods; 2024 Sep; 409():110207. PubMed ID: 38944128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive independent vector analysis for multi-subject complex-valued fMRI data.
    Kuang LD; Lin QH; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2017 Apr; 281():49-63. PubMed ID: 28214528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data.
    Zhang CY; Lin QH; Niu YW; Li WX; Gong XF; Cong F; Wang YP; Calhoun VD
    Hum Brain Mapp; 2023 Dec; 44(17):5712-5728. PubMed ID: 37647216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors.
    Abreu R; Soares JF; Lima AC; Sousa L; Batista S; Castelo-Branco M; Duarte JV
    Brain Topogr; 2022 May; 35(3):282-301. PubMed ID: 35142957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse representation of complex-valued fMRI data based on spatiotemporal concatenation of real and imaginary parts.
    Zhang CY; Lin QH; Kuang LD; Li WX; Gong XF; Calhoun VD
    J Neurosci Methods; 2021 Mar; 351():109047. PubMed ID: 33385421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic functional network connectivity based on spatial source phase maps of complex-valued fMRI data: Application to schizophrenia.
    Li WX; Lin QH; Zhao BH; Kuang LD; Zhang CY; Han Y; Calhoun VD
    J Neurosci Methods; 2024 Mar; 403():110049. PubMed ID: 38151187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling both the magnitude and phase of complex-valued fMRI data.
    Rowe DB
    Neuroimage; 2005 May; 25(4):1310-24. PubMed ID: 15850748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast, fully Bayesian spatiotemporal inference for fMRI data.
    Musgrove DR; Hughes J; Eberly LE
    Biostatistics; 2016 Apr; 17(2):291-303. PubMed ID: 26553916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A variational Bayes spatiotemporal model for electromagnetic brain mapping.
    Nathoo FS; Babul A; Moiseev A; Virji-Babul N; Beg MF
    Biometrics; 2014 Mar; 70(1):132-43. PubMed ID: 24354514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional brain connectivity in resting-state fMRI using phase and magnitude data.
    Chen Z; Caprihan A; Damaraju E; Rachakonda S; Calhoun V
    J Neurosci Methods; 2018 Jan; 293():299-309. PubMed ID: 29055719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian analysis of fMRI data with ICA based spatial prior.
    Bathula DR; Tagare HD; Staib LH; Papademetris X; Schultz RT; Duncan JS
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):246-54. PubMed ID: 18982612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data.
    Røge RE; Madsen KH; Schmidt MN; Mørup M
    Neural Comput; 2017 Oct; 29(10):2712-2741. PubMed ID: 28777721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.
    Chen Z; Calhoun V
    J Neurosci Methods; 2015 Feb; 241():85-93. PubMed ID: 25546484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia.
    Castro E; Gómez-Verdejo V; Martínez-Ramón M; Kiehl KA; Calhoun VD
    Neuroimage; 2014 Feb; 87():1-17. PubMed ID: 24225489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach.
    Lei X; Hu J; Yao D
    Brain Topogr; 2012 Jan; 25(1):27-38. PubMed ID: 21547481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data.
    Lin QH; Niu YW; Sui J; Zhao WD; Zhuo C; Calhoun VD
    Med Image Anal; 2022 Jul; 79():102430. PubMed ID: 35397470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian spatiotemporal model of fMRI data using transfer functions.
    Quirós A; Diez RM; Wilson SP
    Neuroimage; 2010 Sep; 52(3):995-1004. PubMed ID: 20056161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian process based independent analysis for temporal source separation in fMRI.
    Hald DH; Henao R; Winther O
    Neuroimage; 2017 May; 152():563-574. PubMed ID: 28249758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.