These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38538142)

  • 1. Identifying Distinct Neural Features between the Initial and Corrective Phases of Precise Reaching Using AutoLFADS.
    Lee WH; Karpowicz BM; Pandarinath C; Rouse AG
    J Neurosci; 2024 May; 44(20):. PubMed ID: 38538142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS.
    Lee WH; Karpowicz BM; Pandarinath C; Rouse AG
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
    Schwartze KC; Lee WH; Rouse AG
    J Neurophysiol; 2024 Aug; 132(2):433-445. PubMed ID: 38985937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial and corrective submovement encoding differences within primary motor cortex during precision reaching.
    Schwartze KC; Lee WH; Rouse AG
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic, Condition-Independent Activity in Primary Motor Cortex Predicts Corrective Movement Behavior.
    Rouse AG; Schieber MH; Sarma SV
    eNeuro; 2022; 9(2):. PubMed ID: 35346960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous neural coding of corrective movements in motor cortex.
    Dickey AS; Amit Y; Hatsopoulos NG
    Front Neural Circuits; 2013; 7():51. PubMed ID: 23576955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
    Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG
    J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control.
    Velliste M; Kennedy SD; Schwartz AB; Whitford AS; Sohn JW; McMorland AJ
    J Neurosci; 2014 Apr; 34(17):6011-22. PubMed ID: 24760860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable ensemble performance with single-neuron variability during reaching movements in primates.
    Carmena JM; Lebedev MA; Henriquez CS; Nicolelis MA
    J Neurosci; 2005 Nov; 25(46):10712-6. PubMed ID: 16291944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of Neural Variability in Premotor, Motor, and Posterior Parietal Cortex during Change of Motor Intention.
    Saberi-Moghadam S; Ferrari-Toniolo S; Ferraina S; Caminiti R; Battaglia-Mayer A
    J Neurosci; 2016 Apr; 36(16):4614-23. PubMed ID: 27098702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reach-dependent reorientation of rotational dynamics in motor cortex.
    Sabatini DA; Kaufman MT
    Nat Commun; 2024 Aug; 15(1):7007. PubMed ID: 39143078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task.
    Bollu T; Whitehead SC; Prasad N; Walker J; Shyamkumar N; Subramaniam R; Kardon B; Cohen I; Goldberg JH
    J Neurophysiol; 2024 Sep; 132(3):829-848. PubMed ID: 39081209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement Decomposition in the Primary Motor Cortex.
    Kadmon Harpaz N; Ungarish D; Hatsopoulos NG; Flash T
    Cereb Cortex; 2019 Apr; 29(4):1619-1633. PubMed ID: 29668846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical modulations increase in early sessions with brain-machine interface.
    Zacksenhouse M; Lebedev MA; Carmena JM; O'Doherty JE; Henriquez C; Nicolelis MA
    PLoS One; 2007 Jul; 2(7):e619. PubMed ID: 17637835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements.
    Hwang EJ; Dahlen JE; Mukundan M; Komiyama T
    J Neurosci; 2021 Aug; 41(33):7029-7047. PubMed ID: 34244359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.
    Michaels JA; Dann B; Intveld RW; Scherberger H
    J Neurosci; 2015 Aug; 35(32):11415-32. PubMed ID: 26269647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortex-dependent corrections as the tongue reaches for and misses targets.
    Bollu T; Ito BS; Whitehead SC; Kardon B; Redd J; Liu MH; Goldberg JH
    Nature; 2021 Jun; 594(7861):82-87. PubMed ID: 34012117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling task-specific neuronal ensembles improves decoding of grasp.
    Smith RJ; Soares AB; Rouse AG; Schieber MH; Thakor NV
    J Neural Eng; 2018 Jun; 15(3):036006. PubMed ID: 29393065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.