These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38538145)

  • 1. Visual Deprivation during Mouse Critical Period Reorganizes Network-Level Functional Connectivity.
    Chen S; Rahn RM; Bice AR; Bice SH; Padawer-Curry JA; Hengen KB; Dougherty JD; Culver JP
    J Neurosci; 2024 May; 44(19):. PubMed ID: 38538145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual deprivation during mouse critical period reorganizes network-level functional connectivity.
    Chen S; Rahn RM; Bice AR; Bice SH; Padawer-Curry JA; Hengen KB; Dougherty JD; Culver JP
    bioRxiv; 2023 Dec; ():. PubMed ID: 37398380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.
    Khibnik LA; Cho KK; Bear MF
    Neuron; 2010 May; 66(4):493-500. PubMed ID: 20510854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-enabled enhancement of adult visual cortex function.
    Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT
    J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-modal restoration of ocular dominance plasticity in adult mice.
    Teichert M; Isstas M; Zhang Y; Bolz J
    Eur J Neurosci; 2018 Jun; 47(11):1375-1384. PubMed ID: 29761580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke.
    Stodieck SK; Greifzu F; Goetze B; Schmidt KF; Löwel S
    Exp Gerontol; 2014 Dec; 60():1-11. PubMed ID: 25220148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporally coherent visual stimuli boost ocular dominance plasticity.
    Matthies U; Balog J; Lehmann K
    J Neurosci; 2013 Jul; 33(29):11774-8. PubMed ID: 23864666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism.
    Kraft AW; Mitra A; Bauer AQ; Snyder AZ; Raichle ME; Culver JP; Lee JM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9952-E9961. PubMed ID: 29087327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
    Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP
    J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of cortical inhibition mediates ocular dominance plasticity during the critical period.
    Ma WP; Li YT; Tao HW
    J Neurosci; 2013 Jul; 33(27):11276-80. PubMed ID: 23825430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
    Cang J; Kalatsky VA; Löwel S; Stryker MP
    Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex In Vivo.
    Barnes SJ; Sammons RP; Jacobsen RI; Mackie J; Keller GB; Keck T
    Neuron; 2015 Jun; 86(5):1290-303. PubMed ID: 26050045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex.
    Rose T; Jaepel J; Hübener M; Bonhoeffer T
    Science; 2016 Jun; 352(6291):1319-22. PubMed ID: 27284193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experience dependent plasticity of higher visual cortical areas in the mouse.
    Craddock R; Vasalauskaite A; Ranson A; Sengpiel F
    Cereb Cortex; 2023 Jul; 33(15):9303-9312. PubMed ID: 37279562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sleep-dependent plasticity requires cortical activity.
    Jha SK; Jones BE; Coleman T; Steinmetz N; Law CT; Griffin G; Hawk J; Dabbish N; Kalatsky VA; Frank MG
    J Neurosci; 2005 Oct; 25(40):9266-74. PubMed ID: 16207886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.