These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38538535)
1. Cucurbit[8]uril Mediated Supramolecular and Photocrosslinked Interpenetrating Network Hydrogel Matrices for 3D-Bioprinting. Wang Y; Bimmermann AM; Neufurth M; Besenius P Adv Mater; 2024 Jun; 36(26):e2313270. PubMed ID: 38538535 [TBL] [Abstract][Full Text] [Related]
2. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
3. Peptide Amphiphile Hydrogels Based on Homoternary Cucurbit[8]uril Host-Guest Complexes. Redondo-Gómez C; Padilla-Lopátegui S; Mata A; Azevedo HS Bioconjug Chem; 2022 Jan; 33(1):111-120. PubMed ID: 34914370 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular DNA nanogels through host-guest interaction for targeted drug delivery. Duan Z; Dong G; Yang H; Yan Z; Liu S; Dong Y; Zhao Z J Mater Chem B; 2024 Jun; 12(25):6137-6145. PubMed ID: 38842102 [TBL] [Abstract][Full Text] [Related]
5. Self-Healable Supramolecular Hydrogel Formed by Nor-Seco-Cucurbit[10]uril as a Supramolecular Crosslinker. Park KM; Roh JH; Sung G; Murray J; Kim K Chem Asian J; 2017 Jul; 12(13):1461-1464. PubMed ID: 28337859 [TBL] [Abstract][Full Text] [Related]
6. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
7. Rational Design of Self-Assembling Supramolecular Protein Nanostructures Utilizing the Cucurbit[8]Uril Macrocyclic Host. Ioannou E; Labrou NE Methods Mol Biol; 2022; 2487():177-187. PubMed ID: 35687236 [TBL] [Abstract][Full Text] [Related]
9. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
10. Cucurbit[8]uril-based supramolecular theranostics. Wu D; Wang J; Du X; Cao Y; Ping K; Liu D J Nanobiotechnology; 2024 May; 22(1):235. PubMed ID: 38725031 [TBL] [Abstract][Full Text] [Related]
11. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
13. Responsive Double Network Hydrogels of Interpenetrating DNA and CB[8] Host-Guest Supramolecular Systems. Li C; Rowland MJ; Shao Y; Cao T; Chen C; Jia H; Zhou X; Yang Z; Scherman OA; Liu D Adv Mater; 2015 Jun; 27(21):3298-304. PubMed ID: 25899855 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Supramolecular Hydrogels Spanning an Unprecedented Range of Host-Guest Affinity. Zou L; Braegelman AS; Webber MJ ACS Appl Mater Interfaces; 2019 Feb; 11(6):5695-5700. PubMed ID: 30707553 [TBL] [Abstract][Full Text] [Related]
15. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. Das S; Valoor R; Ratnayake P; Basu B ACS Appl Bio Mater; 2024 May; 7(5):2809-2835. PubMed ID: 38602318 [TBL] [Abstract][Full Text] [Related]
16. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
17. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. Wang LL; Highley CB; Yeh YC; Galarraga JH; Uman S; Burdick JA J Biomed Mater Res A; 2018 Apr; 106(4):865-875. PubMed ID: 29314616 [TBL] [Abstract][Full Text] [Related]
19. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Chen Q; Tian X; Fan J; Tong H; Ao Q; Wang X Molecules; 2020 Feb; 25(3):. PubMed ID: 32050529 [TBL] [Abstract][Full Text] [Related]
20. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]