These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38538800)
1. Graphene nanoribbons grown in hBN stacks for high-performance electronics. Lyu B; Chen J; Wang S; Lou S; Shen P; Xie J; Qiu L; Mitchell I; Li C; Hu C; Zhou X; Watanabe K; Taniguchi T; Wang X; Jia J; Liang Q; Chen G; Li T; Wang S; Ouyang W; Hod O; Ding F; Urbakh M; Shi Z Nature; 2024 Apr; 628(8009):758-764. PubMed ID: 38538800 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates. Lyu B; Chen J; Lou S; Li C; Qiu L; Ouyang W; Xie J; Mitchell I; Wu T; Deng A; Hu C; Zhou X; Shen P; Ma S; Wu Z; Watanabe K; Taniguchi T; Wang X; Liang Q; Jia J; Urbakh M; Hod O; Ding F; Wang S; Shi Z Adv Mater; 2022 Jul; 34(28):e2200956. PubMed ID: 35560711 [TBL] [Abstract][Full Text] [Related]
3. One-dimensional hexagonal boron nitride conducting channel. Park HJ; Cha J; Choi M; Kim JH; Tay RY; Teo EHT; Park N; Hong S; Lee Z Sci Adv; 2020 Mar; 6(10):eaay4958. PubMed ID: 32181347 [TBL] [Abstract][Full Text] [Related]
4. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Chen L; He L; Wang HS; Wang H; Tang S; Cong C; Xie H; Li L; Xia H; Li T; Wu T; Zhang D; Deng L; Yu T; Xie X; Jiang M Nat Commun; 2017 Mar; 8():14703. PubMed ID: 28276532 [TBL] [Abstract][Full Text] [Related]
5. On the hydrogen evolution reaction activity of graphene-hBN van der Waals heterostructures. Bawari S; Kaley NM; Pal S; Vineesh TV; Ghosh S; Mondal J; Narayanan TN Phys Chem Chem Phys; 2018 Jun; 20(22):15007-15014. PubMed ID: 29594282 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of AAB-Stacked Single-Crystal Graphene/hBN/Graphene Trilayer van der Waals Heterostructures by In Situ CVD. Tian B; Li J; Chen M; Dong H; Zhang X Adv Sci (Weinh); 2022 Jul; 9(21):e2201324. PubMed ID: 35618473 [TBL] [Abstract][Full Text] [Related]
7. Chemically detaching hBN crystals grown at atmospheric pressure and high temperature for high-performance graphene devices. Ouaj T; Kramme L; Metzelaars M; Li J; Watanabe K; Taniguchi T; Edgar JH; Beschoten B; Kögerler P; Stampfer C Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37607531 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Kim KK; Lee HS; Lee YH Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784 [TBL] [Abstract][Full Text] [Related]
9. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene. Shautsova V; Gilbertson AM; Black NC; Maier SA; Cohen LF Sci Rep; 2016 Jul; 6():30210. PubMed ID: 27443219 [TBL] [Abstract][Full Text] [Related]
10. Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process. Tien DH; Park JY; Kim KB; Lee N; Choi T; Kim P; Taniguchi T; Watanabe K; Seo Y ACS Appl Mater Interfaces; 2016 Feb; 8(5):3072-8. PubMed ID: 26771834 [TBL] [Abstract][Full Text] [Related]
11. Stacking Order in Graphite Films Controlled by van der Waals Technology. Yang Y; Zou YC; Woods CR; Shi Y; Yin J; Xu S; Ozdemir S; Taniguchi T; Watanabe K; Geim AK; Novoselov KS; Haigh SJ; Mishchenko A Nano Lett; 2019 Dec; 19(12):8526-8532. PubMed ID: 31664847 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide. Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670 [TBL] [Abstract][Full Text] [Related]
13. Epitaxial Intercalation Growth of Scalable Hexagonal Boron Nitride/Graphene Bilayer Moiré Materials with Highly Convergent Interlayer Angles. Wang S; Crowther J; Kageshima H; Hibino H; Taniyasu Y ACS Nano; 2021 Sep; 15(9):14384-14393. PubMed ID: 34519487 [TBL] [Abstract][Full Text] [Related]
14. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes. Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923 [TBL] [Abstract][Full Text] [Related]
15. Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy. Wagemann E; Wang Y; Das S; Mitra SK Phys Chem Chem Phys; 2020 Jan; 22(4):2488-2497. PubMed ID: 31939964 [TBL] [Abstract][Full Text] [Related]
16. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. Lee GH; Cui X; Kim YD; Arefe G; Zhang X; Lee CH; Ye F; Watanabe K; Taniguchi T; Kim P; Hone J ACS Nano; 2015 Jul; 9(7):7019-26. PubMed ID: 26083310 [TBL] [Abstract][Full Text] [Related]
17. The hot pick-up technique for batch assembly of van der Waals heterostructures. Pizzocchero F; Gammelgaard L; Jessen BS; Caridad JM; Wang L; Hone J; Bøggild P; Booth TJ Nat Commun; 2016 Jun; 7():11894. PubMed ID: 27305833 [TBL] [Abstract][Full Text] [Related]
18. Mechanically reconfigurable van der Waals devices via low-friction gold sliding. Barabas AZ; Sequeira I; Yang Y; Barajas-Aguilar AH; Taniguchi T; Watanabe K; Sanchez-Yamagishi JD Sci Adv; 2023 Apr; 9(14):eadf9558. PubMed ID: 37027469 [TBL] [Abstract][Full Text] [Related]
19. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Chen TA; Chuu CP; Tseng CC; Wen CK; Wong HP; Pan S; Li R; Chao TA; Chueh WC; Zhang Y; Fu Q; Yakobson BI; Chang WH; Li LJ Nature; 2020 Mar; 579(7798):219-223. PubMed ID: 32132712 [TBL] [Abstract][Full Text] [Related]