These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 38540105)
1. Supervised Parametric Learning in the Identification of Composite Biomarker Signatures of Type 1 Diabetes in Integrated Parallel Multi-Omics Datasets. Bonnell J; Alcazar O; Watts B; Buchwald P; Abdulreda MH; Ogihara M Biomedicines; 2024 Feb; 12(3):. PubMed ID: 38540105 [TBL] [Abstract][Full Text] [Related]
2. Exploring Computational Data Amplification and Imputation for the Discovery of Type 1 Diabetes (T1D) Biomarkers from Limited Human Datasets. Alcazar O; Ogihara M; Ren G; Buchwald P; Abdulreda MH Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291653 [TBL] [Abstract][Full Text] [Related]
3. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Alcazar O; Hernandez LF; Nakayasu ES; Nicora CD; Ansong C; Muehlbauer MJ; Bain JR; Myer CJ; Bhattacharya SK; Buchwald P; Abdulreda MH Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33806609 [TBL] [Abstract][Full Text] [Related]
4. A Composite Biomarker Signature of Type 1 Diabetes Risk Identified via Augmentation of Parallel Multi-Omics Data from a Small Cohort. Alcazar O; Chuang ST; Ren G; Ogihara M; Webb-Robertson BM; Nakayasu ES; Buchwald P; Abdulreda MH bioRxiv; 2024 Feb; ():. PubMed ID: 38405796 [TBL] [Abstract][Full Text] [Related]
5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
6. A supervised Bayesian factor model for the identification of multi-omics signatures. Gygi JP; Konstorum A; Pawar S; Aron E; Kleinstein SH; Guan L Bioinformatics; 2024 May; 40(5):. PubMed ID: 38603606 [TBL] [Abstract][Full Text] [Related]
7. A supervised Bayesian factor model for the identification of multi-omics signatures. Gygi JP; Konstorum A; Pawar S; Aron E; Kleinstein SH; Guan L bioRxiv; 2023 Sep; ():. PubMed ID: 36747790 [TBL] [Abstract][Full Text] [Related]
8. -Omics biomarker identification pipeline for translational medicine. Bravo-Merodio L; Williams JA; Gkoutos GV; Acharjee A J Transl Med; 2019 May; 17(1):155. PubMed ID: 31088492 [TBL] [Abstract][Full Text] [Related]
9. Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers. Martin-Hernandez R; Espeso-Gil S; Domingo C; Latorre P; Hervas S; Hernandez Mora JR; Kotelnikova E Front Mol Biosci; 2023; 10():1258902. PubMed ID: 38028548 [No Abstract] [Full Text] [Related]
10. Comparison of five supervised feature selection algorithms leading to top features and gene signatures from multi-omics data in cancer. Bhadra T; Mallik S; Hasan N; Zhao Z BMC Bioinformatics; 2022 Apr; 23(Suppl 3):153. PubMed ID: 35484501 [TBL] [Abstract][Full Text] [Related]
11. A critical review of machine-learning for "multi-omics" marine metabolite datasets. Manochkumar J; Cherukuri AK; Kumar RS; Almansour AI; Ramamoorthy S; Efferth T Comput Biol Med; 2023 Oct; 165():107425. PubMed ID: 37696182 [TBL] [Abstract][Full Text] [Related]
12. Holomics - a user-friendly R shiny application for multi-omics data integration and analysis. Munk K; Ilina D; Ziemba L; Brader G; Molin EM BMC Bioinformatics; 2024 Mar; 25(1):93. PubMed ID: 38438871 [TBL] [Abstract][Full Text] [Related]
13. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Olivier M; Asmis R; Hawkins GA; Howard TD; Cox LA Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31561483 [TBL] [Abstract][Full Text] [Related]
15. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks. Wang J; Liao N; Du X; Chen Q; Wei B BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021 [TBL] [Abstract][Full Text] [Related]
16. Benchmarking feature selection and feature extraction methods to improve the performances of machine-learning algorithms for patient classification using metabolomics biomedical data. Labory J; Njomgue-Fotso E; Bottini S Comput Struct Biotechnol J; 2024 Dec; 23():1274-1287. PubMed ID: 38560281 [TBL] [Abstract][Full Text] [Related]
17. Integrative machine learning approaches for predicting disease risk using multi-omics data from the UK Biobank. Aguilar O; Chang C; Bismuth E; Rivas MA bioRxiv; 2024 Apr; ():. PubMed ID: 38659731 [TBL] [Abstract][Full Text] [Related]
18. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801 [TBL] [Abstract][Full Text] [Related]
19. Multi-omics integration in biomedical research - A metabolomics-centric review. Wörheide MA; Krumsiek J; Kastenmüller G; Arnold M Anal Chim Acta; 2021 Jan; 1141():144-162. PubMed ID: 33248648 [TBL] [Abstract][Full Text] [Related]