BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38541389)

  • 1. Impregnated Polymeric Sorbent for the Removal of Noble Metal Ions from Model Chloride Solutions and the RAM Module.
    Zinkowska K; Hubicki Z; Wójcik G
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and Thermodynamic Studies of Precious Metals Sorption on Impregnated Lewatit VP OC 1026 from Chloride Solutions.
    Zinkowska K; Hubicki Z; Wójcik G
    Chemphyschem; 2024 Feb; 25(4):e202300817. PubMed ID: 38100298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Impregnated Adsorbent for Noble Metal Ion Sorption.
    Hubicki Z; Zinkowska K; Wójcik G
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin.
    Fujiwara K; Ramesh A; Maki T; Hasegawa H; Ueda K
    J Hazard Mater; 2007 Jul; 146(1-2):39-50. PubMed ID: 17184914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of noble-metal ions on silica with chemically bonded nitrogen-containing ligands.
    Tikhomirova TI; Fadeeva VI; Kudryavtsev GV; Nesterenko PN; Ivanov VM; Savitchev AT; Smirnova NS
    Talanta; 1991 Mar; 38(3):267-74. PubMed ID: 18965139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Recovery of Noble Metal Ions (Pd
    Witt K; Kaczorowska MA; Bożejewicz D; Urbaniak W
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Recovery of Gold from Electronic Waste by New Efficient Type of Sorbent.
    Wójcik G; Górska-Parat M; Hubicki Z; Zinkowska K
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New generation Amberlite XAD resin for the removal of metal ions: A review.
    Ahmad A; Siddique JA; Laskar MA; Kumar R; Mohd-Setapar SH; Khatoon A; Shiekh RA
    J Environ Sci (China); 2015 May; 31():104-23. PubMed ID: 25968265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.
    Rahmani-Sani A; Hosseini-Bandegharaei A; Hosseini SH; Kharghani K; Zarei H; Rastegar A
    J Hazard Mater; 2015 Apr; 286():152-63. PubMed ID: 25576783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin.
    Dizge N; Keskinler B; Barlas H
    J Hazard Mater; 2009 Aug; 167(1-3):915-26. PubMed ID: 19231079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of lanthanum and gadolinium from nitrate medium using Aliquat-336 impregnated onto Amberlite XAD-4.
    El-Sofany EA
    J Hazard Mater; 2008 May; 153(3):948-54. PubMed ID: 17980479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Application of 2,6-Bis(4-Methoxybenzoyl)-Diaminopyridine in Solvent Extraction and Polymer Membrane Separation for the Recovery of Au(III), Ag(I), Pd(II) and Pt(II) Ions from Aqueous Solutions.
    Bożejewicz D; Witt K; Kaczorowska MA; Urbaniak W; Ośmiałowski B
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity of noble metals dynamic sorption preconcentration on reversed-phase sorbents.
    Fedyunina NN; Seregina IF; Ossipov K; Dubenskiy AS; Tsysin GI; Bolshov MA
    Anal Chim Acta; 2013 Oct; 798():109-14. PubMed ID: 24070491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe(3)O(4) nanoparticles.
    Uheida A; Iglesias M; Fontàs C; Hidalgo M; Salvadó V; Zhang Y; Muhammed M
    J Colloid Interface Sci; 2006 Sep; 301(2):402-8. PubMed ID: 16780854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new tannin-based adsorbent synthesized for rapid and selective recovery of palladium and gold: Optimization using central composite design.
    Zandi-Darehgharibi F; Haddadi H; Asfaram A
    Heliyon; 2024 Feb; 10(3):e24639. PubMed ID: 38314278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective and highly efficient removal of uranium from radioactive effluents by activated carbon functionalized with 2-aminobenzoic acid as a new sorbent.
    Nezhad MM; Semnani A; Tavakkoli N; Shirani M
    J Environ Manage; 2021 Dec; 299():113587. PubMed ID: 34479154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis.
    Jayakumar R; Rajasimman M; Karthikeyan C
    Ecotoxicol Environ Saf; 2015 Nov; 121():199-210. PubMed ID: 25866206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmentally friendly Pd(II) recovery from spent automotive catalysts using resins impregnated with a pincer-type extractant.
    Yamada M; Kimura S; Rajiv Gandhi M; Shibayama A
    Sci Rep; 2021 Jan; 11(1):365. PubMed ID: 33432006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions.
    Unlü N; Ersoz M
    J Hazard Mater; 2006 Aug; 136(2):272-80. PubMed ID: 16442227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Column and batch sorption investigations of nickel(II) on extractant-impregnated resin.
    Tetgure SR; Choudhary BC; Borse AU; Garole DJ
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):27291-27304. PubMed ID: 31321729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.